MATHEMATICS 307
COMPLEX NUMBERS
The introduction of complex numbers in the 16th century was a natural step in a sequence of extensions of the positive integers, starting with the introduction of negative numbers (to solve equations of the form $x+a=0$), the introduction of rational numbers (to solve equations like $q x+p=0, p, q$ integers) and the introduction of irrational numbers (to solve equations like $x^{2}-2=0$). The introduction of $i=\sqrt{-1}$ made it possible to solve the equation $x^{2}+1=0$, in fact, any quadratic equation. Pleasantly enough, one does not need any further extensions to solve an arbitrary polynomial equation

$$
a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0
$$

such an equation always has n roots (possibly complex and possibly repeated). These notes will present one way of defining complex numbers and familiarize you with some of their properties.
The Complex Plane. A complex number z is given by a pair of real numbers x and y and is written in the form $z=x+i y$, where i satisfies $i^{2}=-1$. The complex numbers may be represented as points in the plane (sometimes called the Argand diagram). The real number 1 is represented by the point $(1,0)$, and the complex number i is represented by the point $(0,1)$. The x-axis is called the "real axis", and the y-axis is called the "imaginary axis". For example, the complex numbers $3+4 i$ and $3-4 i$ are illustrated in Fig 1A.

Fig 1A

Fig 1B

Complex numbers are added in a natural way: If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then

$$
\begin{equation*}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \tag{1}
\end{equation*}
$$

Fig 1B illustrates the addition $(4+i)+(2+3 i)=(6+4 i)$. Multiplication is given by

$$
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
$$

Note that the product behaves exactly like the product of any two algebraic expressions, keeping in mind that $i^{2}=-1$. Thus,

$$
(2+i)(-2+4 i)=2(-2)+8 i-2 i+4 i^{2}=-8+6 i
$$

We call x the real part of z and y the imaginary part, and we write $x=\operatorname{Re} z, y=\operatorname{Im} z$. (Remember: $\operatorname{Im} z$ is a real number.) The term "imaginary" is an historical holdover; it took mathematicians some time to accept the fact that i (for "imaginary", naturally) was a
perfectly good mathematical object. Electrical engineers (who make heavy use of complex numbers) reserve the letter i to denote electric current and they use j for $\sqrt{-1}$.

There is only one way we can have $z_{1}=z_{2}$, namely, if $x_{1}=x_{2}$ and $y_{1}=y_{2}$. An equivalent statement (one that is important to keep in mind) is that $z=0$ if and only if $\operatorname{Re} z=0$ and $\operatorname{Im} z=0$. If a is a real number and $z=x+i y$ is complex, then $a z=a x+i a y$ (which is exactly what we would get from the multiplication rule above if z_{2} were of the form $z_{2}=a+i 0$). Division is more complicated (although we will show later that the polar representation of complex numbers makes it easy). To find z_{1} / z_{2} it suffices to find $1 / z_{2}$ and then multiply by z_{1}. The rule for finding the reciprocal of $z=x+i y$ is given by:

$$
\begin{equation*}
\frac{1}{x+i y}=\frac{1}{x+i y} \cdot \frac{x-i y}{x-i y}=\frac{x-i y}{(x+i y)(x-i y)}=\frac{x-i y}{x^{2}+y^{2}} \tag{2}
\end{equation*}
$$

The expression $x-i y$ appears so often and is so useful that it is given a name. It is called the complex conjugate of $z=x+i y$ and a shorthand notation for it is \bar{z}; that is, if $z=x+i y$, then $\bar{z}=x-i y$. For example, $\overline{3+4 i}=3-4 i$, as illustrated in the Fig 1A. Note that $\overline{\bar{z}}=z$ and $\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}$. Exercise (3b) is to show that $\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$. Another important quantity associated with a given complex number z is its modulus

$$
|z|=(z \bar{z})^{1 / 2}=\sqrt{x^{2}+y^{2}}=\left((\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}\right)^{1 / 2}
$$

Note that $|z|$ is a real number. For example, $|3+4 i|=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$. This leads to the inequality

$$
\begin{equation*}
\operatorname{Re} z \leq|\operatorname{Re} z|=\sqrt{(\operatorname{Re} z)^{2}} \leq \sqrt{(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}}=|z| \tag{3}
\end{equation*}
$$

Similarly, $\operatorname{Im} z \leq|\operatorname{Im} z| \leq|z|$. Another inequality concerning the modulus is the important triangle inequality

$$
\begin{equation*}
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \tag{4}
\end{equation*}
$$

To prove this, it suffices to show that the square of the left side is less than the square of the right, so we look at

$$
\left|z_{1}+z_{2}\right|^{2}=\left(z_{1}+z_{2}\right) \overline{\left(z_{1}+z_{2}\right)}=\left(z_{1}+z_{2}\right)\left(\bar{z}_{1}+\bar{z}_{2}\right)=z_{1} \bar{z}_{1}+2 \operatorname{Re} z_{1} \bar{z}_{2}+z_{2} \bar{z}_{2}
$$

(The last equality uses Exercise 3 applied to $z_{1} \bar{z}_{2}$.) Using the fact (from (3)) that $2 \operatorname{Re} z_{1} \bar{z}_{2} \leq$ $2\left|z_{1} \bar{z}_{2}\right|=2\left|z_{1}\right|\left|z_{2}\right|$, we get

$$
\left|z_{1}+z_{2}\right|^{2} \leq\left|z_{1}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right|+\left|z_{2}\right|^{2}=\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2}
$$

which is what we wanted. A useful consequence of the triangle inequality is the following:

$$
\begin{equation*}
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right| \tag{5}
\end{equation*}
$$

Exercises I.

(1) Prove that the product of $z=x+i y$ and the expression in (2) (above) equals 1.
(2) Verify each of the following:
(2a) $\quad(\sqrt{2}-i)-i(1-\sqrt{2} i)=-2 i$
(2b) $\frac{1+2 i}{3-4 i}+\frac{2-i}{5 i}=-\frac{2}{5}$
(2c) $\frac{5}{(1-i)(2-i)(3-i)}=\frac{1}{2} i$
(2d) $\quad(1-i)^{4}=-4$
(3a) Prove that $z+\bar{z}=2 \operatorname{Re} z$ and that z is a real number if and only if $\bar{z}=z$.
(3b) Prove that $\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$.
(4a) Prove that $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$ (Hint: Use (3b).)
(4b) Prove the inequality in (5). (Hint: By (4), $\left|z_{1}\right|=\left|\left(z_{1}-z_{2}\right)+\left(z_{2}\right)\right| \leq\left|z_{1}-z_{2}\right|+\left|z_{2}\right|$.)
5. Find all complex numbers $z=x+i y$ such that $z^{2}=1+i$.

$$
\text { Ans : } z= \pm\left[\sqrt{\sqrt{2}+\frac{1}{2}}+i \sqrt{\sqrt{2}-\frac{1}{2}}\right] .
$$

Polar Representation of Complex Numbers. Recall that the plane has polar coordinates as well as rectangular coordinates. The relation between the rectangular coordinates (x, y) and the polar coordinates (r, θ) is

$$
\begin{gathered}
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta \\
r=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad \theta=\arctan \frac{y}{x}
\end{gathered}
$$

(If $z=0$, then $r=0$ and θ can be anything.)
Thus, for the complex number $z=x+i y$, we can write

$$
z=r(\cos \theta+i \sin \theta)
$$

There is another way to rewrite this expression for z. The power series representation for e^{x} in powers of x is given by

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}+\ldots
$$

For any complex number z, we define e^{z} by the power series:

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\ldots+\frac{z^{n}}{n!}+\ldots
$$

In particular,

$$
\begin{aligned}
e^{i \theta} & =1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\ldots+\frac{(i \theta)^{n}}{n!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\ldots
\end{aligned}
$$

Recall the power series for $\cos \theta$ and $\sin \theta$:

$$
\begin{gathered}
\cos \theta=1-\frac{\theta^{2}}{2}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\ldots+(-1)^{n} \frac{\theta^{2 n}}{(2 n)!}+\ldots \\
\sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots+(-1)^{n} \frac{\theta^{2 n+1}}{(2 n+1)!}+\ldots
\end{gathered}
$$

Thus (the power series for $\left.e^{i \theta}\right)=($ the power series for $\cos \theta)+i \cdot($ the power series for $\sin \theta)$ This is the Euler Formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

For example,

$$
e^{i \pi / 2}=i, \quad e^{\pi i}=-1 \quad \text { and } \quad e^{2 \pi i}=+1
$$

Given $z=x+i y$, then z can be written in the form $z=r e^{i \theta}$, where

$$
\begin{equation*}
r=\sqrt{x^{2}+y^{2}}=|z| \quad \text { and } \quad \theta=\tan ^{-1} \frac{y}{x} \tag{6}
\end{equation*}
$$

For example the complex number $z=8+6 i$ may also be written as $10 e^{i \theta}$, where $\theta=$ $\arctan (.75)=.6435 \ldots$ radians. This is illustrated in FIG 2.

Fig 2
If $z=-4+4 i$, then $r=\sqrt{4^{2}+4^{2}}=4 \sqrt{2}$ and $\theta=3 \pi / 4$, therefore $z=4 \sqrt{2} e^{3 \pi i / 4}$. Any angle which differs from $3 \pi / 4$ by an integer multiple of 2π will give us the same complex number. Thus, $-4+4 i$ can also be written as $4 \sqrt{2} e^{11 \pi i / 4}$ or as $4 \sqrt{2} e^{-5 \pi i / 4}$. In general, if $z=r e^{i \theta}$, then we also have $z=r e^{i(\theta+2 \pi k)}, k=0, \pm 1, \pm 2, \ldots$. Moreover, there is ambiguity in equation (6) about the inverse tangent which can (and must) be resolved by looking at the signs of x and y, respectively, in order to determine the quadrant in which θ lies. If $x=0$, then the formula for θ makes no sense, but $x=0$ simply means that z lies on the imaginary axis and so θ must be $\pi / 2$ or $3 \pi / 2$ (depending on whether y is positive or negative).

The conditions for equality of two complex numbers using polar coordinates are not quite as simple as they were for rectangular coordinates. If $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, then

$$
z_{1}=z_{2} \text { if and only if } r_{1}=r_{2} \text { and } \theta_{1}=\theta_{2}+2 \pi k, k=0, \pm 1, \pm 2, \ldots
$$

Despite this, the polar representation is very useful when it comes to multiplication:

$$
\begin{equation*}
\text { if } z_{1}=r_{1} e^{i \theta_{1}} \quad \text { and } \quad z_{2}=r_{2} e^{i \theta_{2}}, \quad \text { then } \quad z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)} \tag{7}
\end{equation*}
$$

To see why this is true, write $z_{1} z_{2}=r e^{i \theta}$, so that $r=\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|=r_{1} r_{2}$ (the next-tolast equality uses $\operatorname{Ex}(4 \mathrm{a})$). It remains to show that $\theta=\theta_{1}+\theta_{2}$, that is, that $e^{i \theta_{1}} e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)}$, (this is Exercise (7a)). For example, let

$$
\begin{gathered}
z_{1}=2+i=\sqrt{5} e^{i \theta_{1}}, \quad \theta_{1}=\tan ^{-1}\left(\frac{1}{2}\right)=0.464 \ldots \\
z_{2}=-2+4 i=\sqrt{20} e^{i \theta_{2}}, \quad \theta_{2}=\tan ^{-1}(-2)=-1.1071 \cdots+\pi=2.0344 \ldots
\end{gathered}
$$

Then $z_{3}=z_{1} z_{2}$, where:

$$
z_{3}=-8+6 i=\sqrt{100} e^{i \theta_{3}} \quad \theta_{3}=\tan ^{-1}\left(-\frac{3}{4}\right)=2.498 \ldots
$$

Fig 3
Applying (7) to $z_{1}=z_{2}=-4+4 i=4 \sqrt{2} e^{\frac{3}{4} \pi i}$ (our earlier example), we get

$$
(4+4 i)^{2}=\left(4 \sqrt{2} e^{\frac{3}{4} \pi i}\right)^{2}=32 e^{\frac{3}{2} \pi i}=-32 i .
$$

By an easy induction argument, the formula in (7) can be used to prove that for any positive integer n

$$
\text { If } z=r e^{i \theta}, \quad \text { then } \quad z^{n}=r^{n} e^{i n \theta}
$$

This makes it easy to solve equations like $z^{3}=1$. Indeed, writing the unknown number z as $r e^{i \theta}$, we have $r^{3} e^{i 3 \theta}=1 \equiv e^{0 i}$, hence $r^{3}=1$ (so $r=1$) and $3 \theta=2 k \pi, k=0, \pm 1, \pm 2, \ldots$ It follows that $\theta=2 k \pi / 3, k=0, \pm 1, \pm 2, \ldots$ There are only three distinct complex numbers of the form $e^{2 k \pi i / 3}$, namely $e^{0}=1, e^{2 \pi i / 3}$ and $e^{4 \pi i / 3}$. The following figure illustrates $z=8 i=$ $8 e^{i \pi / 2}$ and its three cube roots $z_{1}=2 e^{i \pi / 6}, \quad z_{2}=2 e^{5 i \pi / 6}, \quad z_{3}=2 e^{9 i \pi / 6}=2 e^{3 \pi i / 2}$.

Fig 4
¿From the fact that $\left(e^{i \theta}\right)^{n}=e^{i n \theta}$ we obtain De Moivre's formula:

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

By expanding on the left and equating real and imaginary parts, this leads to trigonometric identities which can be used to express $\cos n \theta$ and $\sin n \theta$ as a sum of terms of the form $(\cos \theta)^{j}(\sin \theta)^{k}$. For example, taking $n=2$ one gets $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$. For $n=3$ one gets $\cos 3 \theta=\cos ^{3} \theta-\cos \theta \sin ^{2} \theta-2 \sin ^{2} \theta \cos ^{2} \theta$.

Exercises II

(6) Let $z_{1}=3 i$ and $z_{2}=2-2 i$
(6a) Plot the points $z_{1}+z_{2}, z_{1}-z_{2}$ and $\overline{z_{2}}$.
(6b) Compute $\left|z_{1}+z_{2}\right|$ and $\left|z_{1}-z_{2}\right|$.
(6c) Express z_{1} and z_{2} in polar form.
(7a) Prove that $e^{i \theta_{1}} e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)}$.
Hint: This is the same as showing that $\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right)=\cos \left(\theta_{1}+\theta_{2}\right)+$ $i \sin \left(\theta_{1}+\theta_{2}\right)$.
(7b) Use (a) to show that $\left(e^{i \theta}\right)^{-1}=e^{-i \theta}$, that is, $e^{-i \theta} e^{i \theta}=1$.
(8) Let $z_{1}=6 e^{i \pi / 3}$ and $z_{2}=2 e^{-i \pi / 6}$. Plot $z_{1}, z_{2}, z_{1} z_{2}$ and z_{1} / z_{2}.
(9) Find all complex numbers z which satisfy $z^{3}=-1$. Ans: There are three distinct such numbers: $e^{\pi i / 3}, e^{\pi i} \equiv-1$ and $e^{5 \pi i / 3}$.
(10) Find all complex numbers $z=r e^{i \theta}$ such that $z^{2}=\sqrt{2} e^{i \pi / 4}$. Ans: $z=2^{\frac{1}{4}} e^{\pi i / 8}, 2^{\frac{1}{4}} e^{9 \pi i / 8}$. Compare with Exercise I.5; this is the polar form of the latter.

