MATHEMATICS 307 COMPLEX NUMBERS
The introduction of complex numbers in the 16th century was a natural step in a sequence

of extensions of the positive integers, starting with the introduction of negative numbers
(to solve equations of the form z + a = 0), the introduction of rational numbers (to solve
equations like gz +p = 0, p, ¢ integers) and the introduction of irrational numbers (to solve
equations like 22 — 2 = 0). The introduction of i = \/—1 made it possible to solve the
equation z2 + 1 = 0, in fact, any quadratic equation. Pleasantly enough, one does not need
any further extensions to solve an arbitrary polynomial equation

apz™ + a4 a1z +a, = 0;

such an equation always has n roots (possibly complex and possibly repeated). These notes
will present one way of defining complex numbers and familiarize you with some of their
properties.

The Complex Plane. A complex number z is given by a pair of real numbers = and
y and is written in the form z = x + iy, where i satisfies 12 = —1. The complex numbers
may be represented as points in the plane (sometimes called the Argand diagram). The real
number 1 is represented by the point (1,0), and the complex number i is represented by
the point (0,1). The z-axis is called the “real axis”, and the y-axis is called the “imaginary
axis”. For example, the complex numbers 3 4+ 47 and 3 — 44 are illustrated in F1G 1A.
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Complex numbers are added in a natural way: If z; = x1 + iy and 29 = o + iy, then

(1) 21+ 22 = (v1 + 22) +i(y1 + y2)
Fic 1B illustrates the addition (4 + i) + (2 + 3i) = (6 + 44¢). Multiplication is given by

2129 = (122 — Y1y2) + i(T1y2 + T2y1)
Note that the product behaves exactly like the product of any two algebraic expressions,
keeping in mind that i> = —1. Thus,

(2 +)(—2+4i) = 2(—2) + 8 — 2i + 4i* = —8 + 6i
We call x the real part of z and y the imaginary part, and we write x = Rez, y = Im 2.
(Remember: Imz is a real number.) The term “imaginary” is an historical holdover; it

took mathematicians some time to accept the fact that i (for “imaginary”, naturally) was a
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perfectly good mathematical object. Electrical engineers (who make heavy use of complex
numbers) reserve the letter ¢ to denote electric current and they use j for /—1.

There is only one way we can have z; = zy, namely, if 1 = x5 and y; = y». An equivalent
statement (one that is important to keep in mind) is that z = 0 if and only if Rez = 0 and
Im z = 0. If a is a real number and z = z+1y is complex, then az = ax+iay (which is exactly
what we would get from the multiplication rule above if z were of the form zy = a + i0).
Division is more complicated (although we will show later that the polar representation of
complex numbers makes it easy). To find z;/z, it suffices to find 1/2, and then multiply by
z1. The rule for finding the reciprocal of z = x + 1y is given by:

1 1 r—1y T — 1y T — 1y

T+ 1y :x+iy r—iy (v+iy)(z—iy) 22+ y>

(2)

The expression x — iy appears so often and is so useful that it is given a name. It is called
the complex conjugate of z = x 41y and a shorthand notation for it is Z; that is, if 2 = x4y,
then Z = x —1y. For example, 3 + 41 = 3 — 44, as illustrated in the F1G 1A . Note that
Z =z and 21 + 23 = Z1 + Zo. Exercise (3b) is to show that z1z3 = Z;Z». Another important
quantity associated with a given complex number z is its modulus

2] = (22)% = Va? + 42 = ((Re2)® + (Im 2)?)/?
Note that |2| is a real number. For example, |3 + 4i| = /32 + 42 = /25 = 5. This leads to
the inequality

(3) Rez < |Rez| = v/(Re2)? < v/(Re2)? + (Im 2)2 = | 7|

Similarly, Im z < |Im z| < |z|. Another inequality concerning the modulus is the important
triangle inequality

(4) |21+ 2| < 21| + |22

To prove this, it suffices to show that the square of the left side is less than the square of
the right, so we look at

‘Zl + 22|2 = (21 + 22)(21 + 22) = (21 + 22)(21 —|—52) = 2121 -+ 2Re 2152 + 2252.
(The last equality uses Exercise 3 applied to z1Z5.) Using the fact (from (3)) that 2Re z;Z2 <
2‘21§2| = 2|Zl||22‘, we get

21+ 2of* < |z P + 221 |22] + |20 = (J21] + [22])?,
which is what we wanted. A useful consequence of the triangle inequality is the following:

(5) |[z1] = |z2|] < |21 — 2|

Exercises 1.

(1) Prove that the product of z = = + 7y and the expression in (2) (above) equals 1.
(2) Verify each of the following:



(2a) (V2 —1) —i(l — V2i) = —2i (2b) éfiﬂ;:—%
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(2¢) (EGCEE e %z (2d) (1—i)*=—4

(3a) Prove that z + Z = 2Rez and that z is a real number if and only if Z = 2.

(3b) Prove that z1z3 = Z1Zo.
(4a) Prove that |z122| = |z1]|22| (Hint: Use (3b).)
(4b) Prove the inequality in (5). (Hint: By (4), |z1] = |(21 — 22) + (22)] < |21 — 22| + |22|.)

5. Find all complex numbers z = x + iy such that 22 =1 + 1.
1 1
Ans:zz:l:[\/\/i+§+i\/\/_—§].

Polar Representation of Complex Numbers. Recall that the plane has polar coor-
dinates as well as rectangular coordinates. The relation between the rectangular coordinates
(x,y) and the polar coordinates (r,0) is

x =rcost and y =rsinf

r=+x%+y? and § = arctan 2

x
(If z =0, then r = 0 and 6 can be anything.)

Thus, for the complex number z = z + iy, we can write

z=r(cosf +isind).

There is another way to rewrite this expression for z. The power series representation for e”

in powers of x is given by

v _ 1 2 28 z"
e = +$+5+§+...+H+...

For any complex number z, we define e* by the power series:
2 23 n

: Lz z
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In particular,

) ,92 .93 6"
e? = 1+¢9+<Z—)+@+...+u+...
2! 3! n!
. 2 g3 g4

Recall the power series for cos 6 and sin 6:
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Thus (the power series for €??) = (the power series for cos @) + i - (the power series for sin )
This is the Euler Formula:

e = cosf + isin 6

For example,

e =4 e =—1 and ¥ =+1

Given z = x + iy, then z can be written in the form z = re?, where

(6) r=y22+tyr=z] and 0=tan"'Z

X

For example the complex number z = 8 + 6i may also be written as 10e”, where § =
arctan(.75) = .6435 ... radians. This is illustrated in Fic 2.

8 + 61 = 10e™

0 = .6435...

Fic 2

If 2 = —4+4i, then r = /42 + 42 = 4v/2 and 0 = 31/4, therefore z = 4v/2¢°™/*. Any angle
which differs from 37 /4 by an integer multiple of 27 will give us the same complex number.
Thus, —4+4¢ can also be written as 4v/2e''™/* or as 4v/2e~°™/4, In general, if z = re®, then
we also have z = re/@2™) L = 0,41,42,.... Moreover, there is ambiguity in equation
(6) about the inverse tangent which can (and must) be resolved by looking at the signs of z
and y, respectively, in order to determine the quadrant in which 6 lies. If x = 0, then the
formula for # makes no sense, but x = 0 simply means that z lies on the imaginary axis and
so # must be 7/2 or 37/2 (depending on whether y is positive or negative).

The conditions for equality of two complex numbers using polar coordinates are not quite
as simple as they were for rectangular coordinates. If z; = 7€' and 2z, = rye?, then

21 = 29 if and only if ry = ry and 0y = 0y + 27k, k=0,+1,+2,....



Despite this, the polar representation is very useful when it comes to multiplication:

(7) if 2y =7 and 2y =1e®,  then 229 = ryree’1702)

To see why this is true, write 2120 = re®, so that r = |2120] = |21||22| = r172 (the next-to-
last equality uses Ex (4a)). It remains to show that @ = 6,465, that is, that e?1ei%2 = i(01+02),
(this is Exercise (7a)). For example, let

. 1
2 =2+1i=Vbe?, 0, = tan_l(g) —0.464. ..
2y = —2 + 4i = V2062, 0y =tan~'(—2) = —1.1071-- -+ 7 = 2.0344 . ..

Then z3 = 229, where:

23 = —8 + 6i = V/100e™ O3 = tan—l(—Z) =2.498. ..
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Applying (7) to 21 = 25 = —4 + 4i = 4y/2e1™ (our earlier example), we get

(4 + 40)2 = (4v/2e1™)? = 32e2™ = —32i.

By an easy induction argument, the formula in (7) can be used to prove that for any positive
integer n
If z=re? then 2" =r"e".

This makes it easy to solve equations like z* = 1. Indeed, writing the unknown number z
as re?, we have r3e¢®? = 1 = ¢% hence 73 =1 (sor = 1) and 30 = 2k, k = 0,£1,42, .. ..
It follows that 0 = 2kw /3, k = 0,£1,42,.... There are only three distinct complex numbers
of the form €*7/3 namely e = 1, €>™/3 and ¢*™/3. The following figure illustrates z = 8i =
8¢'™/2 and its three cube roots z; = 2e"™/6, 2, = 2e5/0 5 = 2e%7/6 = 2¢37/2,



8 = Qe™/?
2657rz'/6 2€m’/6
2697ri/6
Fic 4

;From the fact that (¢?)" = €™’ we obtain De Moivre’s formula:

(cosf + i sin0)" = cosnb + isinnf

By expanding on the left and equating real and imaginary parts, this leads to trigonometric
identities which can be used to express cosnf and sinnf as a sum of terms of the form
(cos0)?(sin §)*. For example, taking n = 2 one gets cos 20 = cos?§ — sin” 6. For n = 3 one
gets cos 30 = cos® § — cos fsin? § — 2sin? @ cos? 6.
Exercises 11
(6) Letz =3iand 2o =2—2i

(6a) Plot the points z1 + 29, 21 — 29 and Z3.

(6b) Compute |21 + 22| and |21 — 22|

(6c) Express z; and z; in polar form.
(7a) Prove that e1ef2 = i01102)

Hint: This is the same as showing that (cosf; + isin 6 )(cosfy + isinfy) = cos(f; + 02) +
isin(6y + 6s).

(7b) Use (a) to show that (e?)~! = e=% that is, e ?ei? = 1.

(8) Let 21 = 6€i7r/3 and 9 = 2€_m/6. Plot 21y R9, 122 and 21/22.

(9) Find all complex numbers z which satisfy z> = —1. Ans: There are three distinct such
57ri/3‘

numbers: e™/3 e™ = —1 and e

(10) Find all complex numbers z = re such that 22 = v/2e™™/*. Ans: z = 21¢™/8 21¢971/8,

Compare with Exercise 1.5; this is the polar form of the latter.



