
MATHEMATICS 307 COMPLEX NUMBERS
The introduction of complex numbers in the 16th century was a natural step in a sequence

of extensions of the positive integers, starting with the introduction of negative numbers
(to solve equations of the form x + a = 0), the introduction of rational numbers (to solve
equations like qx + p = 0, p, q integers) and the introduction of irrational numbers (to solve
equations like x2 − 2 = 0). The introduction of i =

√
−1 made it possible to solve the

equation x2 + 1 = 0, in fact, any quadratic equation. Pleasantly enough, one does not need
any further extensions to solve an arbitrary polynomial equation

a0x
n + a1x

n−1 + · · ·+ an−1x + an = 0;

such an equation always has n roots (possibly complex and possibly repeated). These notes
will present one way of defining complex numbers and familiarize you with some of their
properties.

The Complex Plane. A complex number z is given by a pair of real numbers x and
y and is written in the form z = x + iy, where i satisfies i2 = −1. The complex numbers
may be represented as points in the plane (sometimes called the Argand diagram). The real
number 1 is represented by the point (1, 0), and the complex number i is represented by
the point (0, 1). The x-axis is called the “real axis”, and the y-axis is called the “imaginary
axis”. For example, the complex numbers 3 + 4i and 3− 4i are illustrated in Fig 1a.
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Complex numbers are added in a natural way: If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2)(1)

Fig 1b illustrates the addition (4 + i) + (2 + 3i) = (6 + 4i). Multiplication is given by

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

Note that the product behaves exactly like the product of any two algebraic expressions,
keeping in mind that i2 = −1. Thus,

(2 + i)(−2 + 4i) = 2(−2) + 8i− 2i + 4i2 = −8 + 6i

We call x the real part of z and y the imaginary part, and we write x = Re z, y = Im z.
(Remember: Im z is a real number.) The term “imaginary” is an historical holdover; it
took mathematicians some time to accept the fact that i (for “imaginary”, naturally) was a
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perfectly good mathematical object. Electrical engineers (who make heavy use of complex
numbers) reserve the letter i to denote electric current and they use j for

√
−1.

There is only one way we can have z1 = z2, namely, if x1 = x2 and y1 = y2. An equivalent
statement (one that is important to keep in mind) is that z = 0 if and only if Re z = 0 and
Im z = 0. If a is a real number and z = x+iy is complex, then az = ax+iay (which is exactly
what we would get from the multiplication rule above if z2 were of the form z2 = a + i0).
Division is more complicated (although we will show later that the polar representation of
complex numbers makes it easy). To find z1/z2 it suffices to find 1/z2 and then multiply by
z1. The rule for finding the reciprocal of z = x + iy is given by:

1

x + iy
=

1

x + iy
· x− iy

x− iy
=

x− iy

(x + iy)(x− iy)
=

x− iy

x2 + y2
(2)

The expression x− iy appears so often and is so useful that it is given a name. It is called
the complex conjugate of z = x+ iy and a shorthand notation for it is z; that is, if z = x+ iy,
then z = x − iy. For example, 3 + 4i = 3 − 4i, as illustrated in the Fig 1a . Note that
z = z and z1 + z2 = z1 + z2. Exercise (3b) is to show that z1z2 = z1z2. Another important
quantity associated with a given complex number z is its modulus

|z| = (zz)1/2 =
√

x2 + y2 =
(

(Re z)2 + (Im z)2
)1/2

Note that |z| is a real number. For example, |3 + 4i| =
√

32 + 42 =
√

25 = 5. This leads to
the inequality

Re z ≤ |Re z| =
√

(Re z)2 ≤
√

(Re z)2 + (Im z)2 = |z|(3)

Similarly, Im z ≤ |Im z| ≤ |z|. Another inequality concerning the modulus is the important
triangle inequality

|z1 + z2| ≤ |z1|+ |z2|(4)

To prove this, it suffices to show that the square of the left side is less than the square of
the right, so we look at

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2) = z1z1 + 2Re z1z2 + z2z2.

(The last equality uses Exercise 3 applied to z1z2.) Using the fact (from (3)) that 2Re z1z2 ≤
2|z1z2| = 2|z1||z2|, we get

|z1 + z2|2 ≤ |z1|2 + 2|z1||z2|+ |z2|2 = (|z1|+ |z2|)2,

which is what we wanted. A useful consequence of the triangle inequality is the following:

||z1| − |z2|| ≤ |z1 − z2|(5)

Exercises I.

(1) Prove that the product of z = x + iy and the expression in (2) (above) equals 1.

(2) Verify each of the following:



3

(2a) (
√

2− i)− i(1−
√

2i) = −2i (2b)
1 + 2i

3− 4i
+

2− i

5i
= −2

5

(2c)
5

(1− i)(2− i)(3− i)
=

1

2
i (2d) (1− i)4 = −4

(3a) Prove that z + z = 2Rez and that z is a real number if and only if z = z.

(3b) Prove that z1z2 = z1z2.

(4a) Prove that |z1z2| = |z1||z2| (Hint: Use (3b).)

(4b) Prove the inequality in (5). (Hint: By (4), |z1| = |(z1 − z2) + (z2)| ≤ |z1 − z2|+ |z2|.)

5. Find all complex numbers z = x + iy such that z2 = 1 + i.

Ans : z = ±
[

√√
2 +

1

2
+ i

√√
2− 1

2

]

.

Polar Representation of Complex Numbers. Recall that the plane has polar coor-
dinates as well as rectangular coordinates. The relation between the rectangular coordinates
(x, y) and the polar coordinates (r, θ) is

x = r cos θ and y = r sin θ

r =
√

x2 + y2 and θ = arctan
y

x
(If z = 0, then r = 0 and θ can be anything.)

Thus, for the complex number z = x + iy, we can write

z = r(cos θ + i sin θ).

There is another way to rewrite this expression for z. The power series representation for ex

in powers of x is given by

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . +

xn

n!
+ . . .

For any complex number z, we define ez by the power series:

ez = 1 + z +
z2

2!
+

z3

3!
+ . . . +

zn

n!
+ . . .

In particular,

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+ . . . +

(iθ)n

n!
+ . . .

= 1 + iθ − θ2

2!
− i

θ3

3!
+

θ4

4!
+ . . .

Recall the power series for cos θ and sin θ:
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cos θ = 1− θ2

2
+

θ4

4!
− θ6

6!
+ . . . + (−1)n θ2n

(2n)!
+ . . .

sin θ = θ − θ3

3!
+

θ5

5!
− θ7

7!
+ . . . + (−1)n θ2n+1

(2n + 1)!
+ . . .

Thus (the power series for eiθ) = (the power series for cos θ) + i · (the power series for sin θ)
This is the Euler Formula:

eiθ = cos θ + i sin θ

For example,

eiπ/2 = i, eπi = −1 and e2πi = +1

Given z = x + iy, then z can be written in the form z = reiθ, where

r =
√

x2 + y2 = |z| and θ = tan−1 y

x
(6)

For example the complex number z = 8 + 6i may also be written as 10eiθ, where θ =
arctan(.75) = .6435 . . . radians. This is illustrated in Fig 2.

r 8 + 6i = 10eiθ
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θ = .6435 . . .

Fig 2

If z = −4 + 4i, then r =
√

42 + 42 = 4
√

2 and θ = 3π/4, therefore z = 4
√

2e3πi/4. Any angle
which differs from 3π/4 by an integer multiple of 2π will give us the same complex number.

Thus, −4+4i can also be written as 4
√

2e11πi/4 or as 4
√

2e−5πi/4. In general, if z = reiθ, then
we also have z = rei(θ+2πk), k = 0,±1,±2, . . . . Moreover, there is ambiguity in equation
(6) about the inverse tangent which can (and must) be resolved by looking at the signs of x
and y, respectively, in order to determine the quadrant in which θ lies. If x = 0, then the
formula for θ makes no sense, but x = 0 simply means that z lies on the imaginary axis and
so θ must be π/2 or 3π/2 (depending on whether y is positive or negative).

The conditions for equality of two complex numbers using polar coordinates are not quite
as simple as they were for rectangular coordinates. If z1 = r1e

iθ1 and z2 = r2e
iθ2 , then

z1 = z2 if and only if r1 = r2 and θ1 = θ2 + 2πk, k = 0,±1,±2, . . . .
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Despite this, the polar representation is very useful when it comes to multiplication:

if z1 = r1e
iθ1 and z2 = r2e

iθ2, then z1z2 = r1r2e
i(θ1+θ2)(7)

To see why this is true, write z1z2 = reiθ, so that r = |z1z2| = |z1||z2| = r1r2 (the next-to-
last equality uses Ex (4a)). It remains to show that θ = θ1+θ2, that is, that eiθ1eiθ2 = ei(θ1+θ2),
(this is Exercise (7a)). For example, let

z1 = 2 + i =
√

5eiθ1 , θ1 = tan−1(
1

2
) = 0.464 . . .

z2 = −2 + 4i =
√

20eiθ2, θ2 = tan−1(−2) = −1.1071 · · ·+ π = 2.0344 . . .

Then z3 = z1z2, where:

z3 = −8 + 6i =
√

100eiθ3 θ3 = tan−1(−3

4
) = 2.498 . . .

r
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Fig 3

Applying (7) to z1 = z2 = −4 + 4i = 4
√

2e
3

4
πi (our earlier example), we get

(4 + 4i)2 = (4
√

2e
3

4
πi)2 = 32e

3

2
πi = −32i.

By an easy induction argument, the formula in (7) can be used to prove that for any positive
integer n

If z = reiθ, then zn = rneinθ.
This makes it easy to solve equations like z3 = 1. Indeed, writing the unknown number z

as reiθ, we have r3ei3θ = 1 ≡ e0i, hence r3 = 1 (so r = 1) and 3θ = 2kπ, k = 0,±1,±2, . . . .
It follows that θ = 2kπ/3, k = 0,±1,±2, . . . . There are only three distinct complex numbers
of the form e2kπi/3, namely e0 = 1, e2πi/3 and e4πi/3. The following figure illustrates z = 8i =
8eiπ/2 and its three cube roots z1 = 2eiπ/6, z2 = 2e5iπ/6, z3 = 2e9iπ/6 = 2e3πi/2.
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r 8i = 8eπi/2

r

2eπi/6

r

2e5πi/6

r 2e9πi/6

Fig 4

¿From the fact that (eiθ)n = einθ we obtain De Moivre’s formula:

(cosθ + i sin θ)n = cos nθ + i sin nθ

By expanding on the left and equating real and imaginary parts, this leads to trigonometric
identities which can be used to express cos nθ and sin nθ as a sum of terms of the form
(cos θ)j(sin θ)k. For example, taking n = 2 one gets cos 2θ = cos2 θ − sin2 θ. For n = 3 one
gets cos 3θ = cos3 θ − cos θ sin2 θ − 2 sin2 θ cos2 θ.

Exercises II

(6) Let z1 = 3i and z2 = 2− 2i

(6a) Plot the points z1 + z2, z1 − z2 and z2.

(6b) Compute |z1 + z2| and |z1 − z2|.
(6c) Express z1 and z2 in polar form.

(7a) Prove that eiθ1eiθ2 = ei(θ1+θ2).

Hint: This is the same as showing that (cos θ1 + i sin θ1)(cos θ2 + i sin θ2) = cos(θ1 + θ2) +
i sin(θ1 + θ2).

(7b) Use (a) to show that (eiθ)−1 = e−iθ, that is, e−iθeiθ = 1.

(8) Let z1 = 6eiπ/3 and z2 = 2e−iπ/6. Plot z1, z2, z1z2 and z1/z2.

(9) Find all complex numbers z which satisfy z3 = −1. Ans: There are three distinct such

numbers: eπi/3, eπi ≡ −1 and e5πi/3.

(10) Find all complex numbers z = reiθ such that z2 =
√

2eiπ/4. Ans: z = 2
1

4 eπi/8, 2
1

4 e9πi/8.

Compare with Exercise I.5; this is the polar form of the latter.


