Name: \qquad

Math 124 Quiz 6 answers

6 December 2001

Instructions: No notes or calculators allowed. Please turn off all cell phones and pagers. Make sure you do both sides of this.

1. Let $f(x)=x^{4}-4 x^{3}+2$.
(a) (4 points) Find the absolute maximum and minimum values of $f(x)$ on the interval $[-1,4]$.
Solution. My plan: first find the critical points, then plug the critical points and end points into $f(x)$.
To find the critical points, note that $f^{\prime}(x)=4 x^{3}-12 x^{2}$. This is never undefined, so the only sort of critical point is when it's zero. So solve this equation for x : $4 x^{3}-12 x^{2}=0$. Factor the left side: $4 x^{2}(x-3)$. So the critical points are $x=0$ and $x=3$.
Now I compute $f(-1)=7, f(0)=2, f(3)=-25, f(4)=2$. So
the absolute maximum value is 7 (when $x=-1$) and
the absolute minimum value is -25 (when $x=3$).
(b) (6 points) Sketch the function $f(x)$, with domain $-1 \leq x \leq 4$. Please label important points in the graph (for example: maxima, minima, critical points, inflection points).
Solution. I've already computed $f^{\prime}(x)$, and I can use that to find where $f(x)$ is increasing and decreasing. $f^{\prime}(x)=4 x^{3}-12 x^{2}=4 x^{2}(x-3)$. This is negative when $x<0$ and when $0<x<3$, and it's positive when $x>3$. So $f(x)$ is decreasing on the intervals $(-1,0)$ and $(0,3)$, increasing on $(3,4)$.
Notice that although $x=0$ is a critical point, $f^{\prime}(x)$ does not change signs there, so it is neither a max nor a min-it's just a place where the tangent line is horizontal. The second derivative is $f^{\prime \prime}(x)=12 x^{2}-24 x=12 x(x-2)$. This is never undefined, and it's zero when $x=0$ or $x=2$. So these are the places where the concavity might change. When $x<0, f^{\prime \prime}(x)>0$. When $0<x<2, f^{\prime \prime}(x)<0$. When $x>2$, $f^{\prime \prime}(x)>0$. So $f(x)$ is concave up on the intervals $(-1,0)$ and $(2,4)$; it's concave down on $(0,2)$. So both $x=0$ and $x=2$ are inflection points.

Here's a graph:

Here's a labeled graph:

