Name:

Math 124 Quiz 4 answers

8 November 2001

Instructions: No notes or calculators allowed. Please turn off all cell phones and pagers. Make sure you do both sides of this.

1. (5 points) Compute $\left(e^{\sin(2x^3+5x-7)}\right)'$.

Solution. This is a composite of three functions, so I'll have to use the chain rule twice.

$$\left(e^{\sin(2x^3+5x-7)}\right)' = \left(\sin(2x^3+5x-7)\right)' e^{\sin(2x^3+5x-7)}$$
 chain rule (1)
= $\left[(6x^2+5)\cos(2x^3+5x-7)e^{\sin(2x^3+5x-7)}\right]$ chain rule again. (2)

Here's a little more detail: let $f(x) = e^x$ and $g(x) = \sin(2x^3 + 5x - 7)$. Then the problem is asking for the derivative of f(g(x)). By the chain rule, this is g'(x)f'(g(x)). This is where line (1) comes from (together with the computation that $f'(x) = e^x$). Now g'(x) is the derivative of $\sin(2x^3 + 5x - 7)$, and this function is a composite of two other functions, say $h(x) = \sin x$ and $k(x) = 2x^3 + 5x - 7$. So by the chain rule, its derivative is (h(k(x)))' = k'(x)h'(k(x)). This is where line (2) comes from (using the easy computations of h'(x) and k'(x)).

Alternatively, let $y = e^{\sin(2x^3+5x-7)}$, let $u = \sin(2x^3+5x-7)$ (so $y = e^u$), and let $w = 2x^3 + 5x - 7$ (so $u = \sin(w)$). Then the chain rule says

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dw} \frac{dw}{dx}$$

= $(e^u)(\cos w)(6x^2 + 5)$
= $e^{\sin(2x^3 + 5x - 7)}\cos(2x^3 + 5x - 7)(6x^2 + 5)$
= $\boxed{(6x^2 + 5)\cos(2x^3 + 5x - 7)e^{\sin(2x^3 + 5x - 7)}}$

Palmieri

- Mathematics 124
- 2. (5 points) Find the slope of the line tangent to the curve $y = \sqrt[3]{1-x^2}$ at the point $(\sqrt{2}, -1)$. Solution. I want to find y', since that will tell me the slope of the tangent line. y is the composite of the cube root function $f(x) = x^{1/3}$ and the function $g(x) = 1 - x^2$. So

$$y' = (f(g(x)))'$$

= g'(x)f'(g(x))
= $(-2x)\frac{1}{3}(g(x))^{-2/3}$
= $\frac{-2x}{3(1-x^2)^{2/3}}$.

To find the slope at the point $(\sqrt{2}, -1)$, plug in $x = \sqrt{2}$: the slope is $\frac{-2\sqrt{2}}{3(1-2)^{2/3}} = \left\lfloor \frac{-2\sqrt{2}}{3} \right\rfloor$. I guess you could also use implicit differentiation, but that wasn't what I intended. If $y = \sqrt[3]{1-x^2}$, then $y^3 = 1-x^2$. Differentiate both sides: $3y^2y' = -2x$, so $y' = \frac{-2x}{3y^2}$. Now plug in

$$x = \sqrt{2}$$
 and $y = -1$ to get a slope of $\left| \frac{-2\sqrt{2}}{3} \right|$