Math 124 Final Examination Spring 2001

Print Your Name	Write Your Signature
Student ID Number	Quiz Section
Professor's Name	TA's Name

!!! READ...INSTRUCTIONS...READ !!!

- 1. Your exam contains 25 multiple choice questions. Each problem is worth 4 points. The entire exam is worth 100 points.
- 2. Your exam should contain 9 pages; please make sure you have a complete exam.
- 3. Each question has a single correct answer.
- 4. You have 3 hours for this final exam.
- 5. If in doubt, ask for clarification.
- 6. Make sure to do your own work on the exam.
- 7. There is plenty of space on the exam to do your work. If you need extra room, raise your hand and ask for blank paper.
- 8. Good Luck!

1. If $y = f(x) = 3x^2 - 4x + 7$, then f'(x) =

- (a) 3x 4.
- (b) $2x^2 + 7$.
- (c) $6x^2 4$.
- (d) 6x 4.
- (e) None of the above.

2. Assume $y = f(\theta) = 2[\sin(2\theta)]^2$, then $f'(\theta) =$

- (a) $4\sin(2\theta)$
- (b) $-4\sin(2\theta)$
- (c) $6\sin(2\theta)\cos(2\theta)$
- (d) $-6\sin(2\theta)\cos(2\theta)$
- (e) None of the above.

3. Let $f(x) = x \arctan(2x)$. The derivative f'(x) is

- (a) $\frac{x}{4x^2+1}$
- (b) $\arctan(2x)$
- (c) $\arctan(2x) + \frac{2x}{4x^2+1}$
- (d) $\arctan(2x) + \frac{x}{4x^2+1}$
- (e) None of the above.

4. Let $g(t) = \ln(\cos t)$. The derivative g'(t) is

- (a) $\frac{1}{\cos t}$
- (b) $-\tan t$
- (c) $-\sin t$
- (d) $\cos t$
- (e) None of the above.

5. If $y = f(x) = x^{\sin(x)}$, then f'(x) =

(a)
$$\sin(x)x^{\sin(x)-1}$$

(b)
$$\cos(x)x^{\sin(x)}$$

(c)
$$-\cos(x)x^{\sin(x)}$$

(d)
$$x^{\sin(x)-1}$$

(e) None of the above.

6. Let $q(x) = 3x^3 - 9x^2 + 6x - 1$. The general anti-derivative of q(x) is

(a)
$$\frac{3}{4}x^3 - \frac{9}{2}x^2 + 6x + C$$

(b)
$$\frac{3}{4}x^4 - \frac{9}{3}x^3 + 3x^2 - x + C$$

(c)
$$9x^2 - 18x + C$$

(d)
$$3x^4 - 9x^3 + 6x^2 - x + C$$

(e) None of the above.

Problems 7-10. You are monitoring a yeast cell for the presence of the compound P; the number molecules of P present at time t minutes is given by the function

$$P(t) = At^2 e^{-Bt}$$
 molecules,

where A and B are constants. The graph of P(t) is pictured.

7. What is the rate of change of P(t) for this experiment?

(a)
$$2Ate^{-Bt}$$

(b)
$$-2ABte^{-Bt}$$

(c)
$$At(2 - Bt)e^{-Bt}$$

(d)
$$At(2+Bt)e^{-Bt}$$

(e) None of the above.

8. The units for the rate of change of P(t)

- (a) molecules
- (b) molecules/minute
- (c) minutes/molecule
- (d) minutes
- (e) None of the above.

9. Assume A=1000 and B=0.1. The maximum number of molecules is present at what time?

- (a) 0.2 minutes
- (b) 2 minutes
- (c) 20 minutes
- (d) 200 minutes
- (e) None of the above.

10. The graph of P'(t) is

- 11. An object is moving along the x-axis. Its position at time t seconds is given by $f(t) = 4\sin(3t-1) + 2$ feet. The maximum velocity of the object, in units of ft/sec", would be
 - (a) 4
 - (b) 7
 - (c) 8
 - (d) 9
 - (e) None of the above.
- 12. Consider the equation $x^2 + 4x xy 3y + y^2 = 10$. The implicit derivative $\frac{dy}{dx}$ is

 - (b) $\frac{y-2x-4}{2y-x+3}$ (c) $\frac{y-2x-4}{2y-x-3}$ (d) $\frac{y-2x+4}{2y-x-3}$
 - (e) None of the above.

- 13. Consider the equation $x^2 + 4x xy 3y + y^2 = 10$, as in the previous problem. Let ℓ be the tangent line to the graph at (0,5). The slope of ℓ is
 - (a) $\frac{9}{7}$
 - (b) $\frac{1}{13}$
 - (c) $\frac{1}{7}$
 - (d) 0
 - (e) None of the above.

Problems 14-16. A ladder is against the side wall of a building and it must pass over a parallel wall 10 feet high and 8 feet from the building. Label x and y as pictured.

14. Which relationship between x and y is always true:

(a)
$$xy = 10x + 80$$

(b)
$$x + 8 = 10 + y$$

(c)
$$(x+8)^2 = y^2$$
.

(d)
$$x^2 + 100 = 8000$$
.

15. The function L(x) that expresses the length of the ladder in terms of the variable x is:

(a)
$$L(x) = (x+8)\sqrt{x^2+100}$$

(b)
$$L(x) = (1 + \frac{8}{x})\sqrt{x^2 + 100}$$

(c)
$$L(x) = (1 + \frac{x}{8})^2 \sqrt{x^2 + 100}$$

(d)
$$L(x) = (x+8)^2 + \sqrt{x^2+100}$$

(e) None of the above.

16. The critical number x for L(x) is

- (a) $2\sqrt[3]{100}$
- (b) $\frac{5\sqrt[3]{100}}{2}$
- (c) $3\sqrt[3]{100}$
- (d) 10
- (e) None of the above.

Problems 17-19. Let $f(x) = x^3 - 3x + 100$.

17. On which interval is f(x) decreasing.

- (a) -1 < x < 1
- (b) -3 < x < 3
- (c) $-\infty < x < -1$
- (d) 0 < x < 100
- (e) None of the above.

18. The local minimal value of f(x) is

- (a) 0
- (b) 1
- (c) 98
- (d) 102
- (e) None of the above.

19. On which interval is f(x) concave up.

- (a) $-\infty < x < -1$
- (b) -1 < x < 1
- (c) $-\infty < x < 0$
- (d) $0 < x < \infty$
- (e) None of the above.

20. Determine the limit: $\lim_{x\to 1} \frac{x-1}{\cos(\pi x/2)}$.

- (a) 1
- (b) 0
- (c) $-\frac{2}{\pi}$
- (d) Doesn't exit.
- (e) None of the above.

21. Determine the limit: $\lim_{t\to 2} \frac{t-2}{t^2+4}$.

- (a) 1
- (b) 0
- (c) $-\frac{2}{\pi}$
- (d) Doesn't exit.
- (e) None of the above.

22. Determine the limit: $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.

- (a) e
- (b) $-\infty$
- (c) 1
- (d) Doesn't exit.
- (e) None of the above.

Problems 23-25: A ladder 10 ft long rests against a vertical wall. Suppose that the bottom of the ladder slides away from the wall at a speed of 10 ft/min at time t=1 minute. Also assume that, at time t=1 minute, the angle between the top of the ladder and the wall is $\pi/4$ rad.

23. Let x be the distance from the bottom of the ladder to the wall and let θ be the angle between the top of the ladder and the wall. What is the relation between x and θ ?

- (a) $x = 10\sin\theta$
- (b) $x = \tan \theta$
- (c) $x = 10\cos\theta$
- (d) $\theta = \cos x$
- (e) None of the above.

- 24. How fast is the angle between the top of the ladder and the wall changing when the angle is $\pi/4$ rad?
 - (a) $\sqrt{3} \text{ rad/min}$
 - (b) $-\sqrt{3} \text{ rad/min}$
 - (c) $\sqrt{2} \text{ rad/min}$
 - (d) 1 rad/min
 - (e) None of the above.
- 25. Use the tangent line approximation or differentials to estimate the distance x when t = 1.1 minutes; x is as defined in problem 23.
 - (a) 10 ft
 - (b) $5\sqrt{2} + 1$ ft
 - (c) 0.1 ft
 - (d) $\pi/4$ ft
 - (e) None of the above.