
Mathematics 124

answers to Winter 2001 final exam

1.(a) Compute dy
dx

if y =
ln(x)

5x3 + 2
.

Solution. Use the quotient rule:

dy

dx
=

(5x3 + 2) 1

x
− ln(x)(15x2)

(5x3 + 2)2
=

5x2 + 2

x
− 15x2 ln(x)

(5x3 + 2)2
.

(b) Let Φ(t) = t tan−1(3t). Compute Φ′(t).
Solution. Product rule plus chain rule:

Φ′(t) = tan−1(3t) +
3t

(3t)2 + 1
= tan−1(3t) +

3t

9t2 + 1
.

(c) Let f(x) = sec(e
√

x) and compute f ′(x).
Solution. Chain rule (several times):

f ′(x) =
1

2
x−1/2e

√
x sec(e

√
x) tan(e

√
x) .

2. Let f(x) = 1

2
x4 − 2x3.

(a) Determine the intervals in x where f(x) is positive / negative, in-
creasing / decreasing, concave up / concave down.

Solution. Factor f(x): f(x) = 1

2
x4 − 2x3 = 1

2
x3(x − 4). This is zero

when x = 0 and when x = 4, and these are the only places f(x) can change
sign. When x < 0, f(x) is positive. When 0 < x < 4, f(x) is negative. When
x > 4, f(x) is positive.

So: f(x) is positive on the intervals (−∞, 0) and (4,∞). It’s negative on
(0, 4).

f ′(x) = 2x3−6x2 = 2x2(x−3). This is zero when x = 0 and when x = 3.
When x < 0, f ′(x) is negative. It is also negative when 0 < x < 3, and it is
positive when x > 3.

So: f(x) is increasing on (3,∞). It is decreasing on (−∞, 0) and (0, 3).
(Thus f(x) has a local minimum at x = 3.)

f ′′(x) = 6x2 − 12x = 6x(x − 2). This is zero when x = 0, x = 2. When
x < 0, f ′′(x) is positive; it’s negative when 0 < x < 2, and it’s positive when
x > 2.
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So: f(x) is concave up on (−∞, 0) and (2,∞). It’s concave down on
(0, 2). (Thus x = 0 and x = 2 are both inflection points.)

(b) Sketch a graph of f(x).
Solution. First, we know f(0) = 0 and f(4) = 0. Since there is a

minimum at x = 3, compute f(3): f(3) = −27/2 = −13 1

2
. Since there is an

inflection point at x = 2, compute f(2): f(2) = −8. (And we may as well
also compute f(1) = −3/2.)
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3. A box has a square base and open top. It is made of wood which
costs $3 a square foot. The box must hold 4 cubic feet. What dimensions
minimize the box?

Solution. Let h be the height of the box, x the width of the base (so
the box is h × x × x). The cost is 3 times the surface area, and we want to
minimize the cost. Let C be the cost; then

C = 3(x2 + 4hx),
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because the bottom of the box is a square, x × x, and there are four sides,
each h × x. The factor of three is because the wood costs $ a square foot.

Also, since the volume is 4 cubic feet, we get the equation 4 = x2h, so
h = 4/x2. Substitute this into the C equation:

C = 3x2 + 12
4

x2
x = 3x2 +

48

x
.

Minimize this on the domain x > 0 (since the width x can’t be negative,
because it’s a length, or zero, because of the denominator):

C ′ = 6x −
48

x2
=

6x3 − 48

x2
= 6

x3 − 8

x2
.

This is undefined when x = 0, which is not in our domain. It is zero when
x3 = 8, which means x = 2. So x = 2 is the only critical point. Since C ′ < 0
when x < 2 and C ′ > 0 when x > 2, the cost function C(x) has a local
minimum at x = 2; since x = 2 is the unique critical point, S in fact has an
absolute minimum there.

Finally (since h = 4/x2), when x = 2, h = 1 . These are the dimensions
of the box.

4. Use implicit differentiation to find the slope dy
dx

of the curve given by

x3 − xy2 − cos y = 1

at the two points (π, π) and (π,−π).
Solution. Implicitly differentiate:

3x2 − y2 − 2xy
dy

dx
+

dy

dx
sin y = 0.

Solve for dy
dx

:
dy

dx
(−2xy + sin y) = −3x2 + y2,

so
dy

dx
=

−3x2 + y2

−2xy + sin y
.
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At the point (π, π), this is

−3π2 + π2

−2π2 + sin π
=

−2π2

−2π2
= 1 .

At the point (π,−π), this is

−3π2 + π2

2π2 + sin(−π)
=

−2π2

2π2
= −1 .

(Notice that these answers make sense when compared to the picture.)

5. (a) lim
x→∞

(

sin x

ln x

)

Solution. The numerator oscillates between −1 and 1. The denominator
goes to ∞. The quotient of a number between −1 and 1 and a very large
number is very small: the limit is 0 .

(b) lim
x→1

xπ − 1

x
√

2 − 1
.

Solution. As x goes to 1, the top and bottom both go to zero: this is an
indeterminate form of the type 0

0
. So use L’Hôpital’s rule:

lim
x→1

xπ − 1

x
√

2 − 1
= lim

x→1

πxπ−1

√
2x

√
2−1

.

This second quotient is defined and continuous when x = 1, so plug in x = 1:

the answer is
π
√

2
.

6. Consider the function f(x) =

{

1 − cos x if x > 0,

0 if x ≤ 0.

(i) Is f continuous at x = 0?

(ii) Is f ′ defined at x = 0?

(iii) Is f ′′ defined at x = 0?
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Solution. (i) Yes .

lim
x→0−

f(x) = lim
x→0−

0 = 0,

and
lim

x→0+
f(x) = lim

x→0+
(1 − cos x) = 0.

Since the right- and left-hand limits agree, lim
x→0

f(x) = 0 = f(0): that is, the

limit as x approaches 0 of f(x) exists, and equals f(0). That’s the definition
of continuity at x = 0.

(ii) Yes . I can differentiate the pieces of the function, to get this:

f ′(x) =

{

sin x if x > 0,

0 if x < 0.

When x = 0, these two formulas agree (and are zero), so the derivative f ′(0)
exists (and equals zero).

Alternatively, the derivative at x = 0 is defined by the formula

lim
x→0

f(x) − f(0)

x − 0
.

I’ll investigate this limit by computing the right- and left-hand limits.

lim
x→0−

f(x) − f(0)

x − 0
= lim

x→0−

0 − 0

x
= lim

x→0−
0 = 0.

Also,

lim
x→0+

f(x) − f(0)

x − 0
= lim

x→0+

(1 − cos x) − 0

x
= lim

x→0+

1 − cos x

x
.

This last limit is an indeterminate form of type 0

0
, so compute it with

L’Hôpital’s rule: it is equal to

lim
x→0+

sin x

1
= 0.

(Alternatively, recognize this as the limit computing the derivative of 1−cos x
when x = 0.) So the one-sided limits agree; therefore the ordinary limit
exists. Therefore the derivative exists.
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(iii) No . From the calculations in part (ii), I have a formula for f ′(x):

f ′(x) =

{

sin x if x > 0,

0 if x ≤ 0.

This function has a “corner” at x = 0; that is, it looks like this:

There is no tangent line at x = 0, so the derivative of this function does
not exist.

7. Let f(x) =
√

x + 2, where x ≥ −2. Find f ′(2) using limits and the
definition of the derivative.

Solution.

f ′(2) = lim
h→0

f(2 + h) − f(2)

h

= lim
h→0

√

(2 + h) + 2 −
√

2 + 2

h

= lim
h→0

√
4 + h −

√
4

h

= lim
h→0

√
4 + h − 2

h

= lim
h→0

√
4 + h − 2

h

√
4 + h + 2

√
4 + h + 2

= lim
h→0

4 + h − 4

h(
√

4 + h + 2)

= lim
h→0

h

h(
√

4 + h + 2)

= lim
h→0

1
√

4 + h + 2
.
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Now I can plug in h = 0, to get
1

√
4 + 2

=
1

4
.

Note: I can check this using derivative formulas: f ′(x) = 1

2
(x + 2)−1/2, so

f ′(2) = 1

2

1√
4

= 1

4
. (I’m allowed to use derivative formulas to check my work,

just not to solve the problem.)

8. Calculamb: his height is given by

f(t) = et−1(1 − cos 2πt), t ≥ 0.

(a) Find a point where his velocity is 0 meters per second.
Solution. This will happen at each minimum and each maximum. From

the graph, it looks like this happens when t = 0, t = 1, t = 2, and t = 3,
as well as at some point t a bit larger than 0.5, some t a bit larger than 1.5,
and some t a bit larger than 2.5.

The formula for the velocity is

f ′(t) = et−1(1 − cos 2πt) + et−1(2π sin 2πt)

= et−1(1 − cos 2πt + 2π sin 2πt).

When t = 0, this is certainly 0 (since cos 0 = 1 and sin 0 = 0). So t = 0 is
one answer.

(Other possible answers: t = 1, t = 2, and t = 3. It’s hard to find the
coordinates where the height hits a maximum.)

(b) What is Calculamb’s acceleration at t = 2 seconds?
Solution. Acceleration is the derivative of velocity:

a(t) = f ′′(t) = et−1(1 − cos 2πt + 4π sin 2πt + 4π2 cos 2πt)

(after using the product rule and doing a little algebra). Now plug in t = 2:

f ′′(2) = e2−1(1 − cos 4π + 4π sin 4π + 4π2 cos 4π) = e(1 − 1 + 0 + 4π2).

So the answer is 4π2e .
Notice that this is positive, and the graph is concave up when t = 2, so

the answer is plausible.
(c) Is Calculamb’s upward speed increasing, decreasing, or both, on the

interval [2, 2.25]?
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Solution. f ′′(t) = et−1(1 + (4π2 − 1) cos 2πt + 4π sin 2πt). When 2 ≤
t ≤ 2.25, 2πt is between 2π and 2π + π

2
. For this range of values, cos 2πt

and sin 2πt both range between 0 and 1. So f ′′(t) is positive for all t in
[2, 2.25]. Thus f ′(t), which is the upward velocity, is increasing throughout
the interval.

9. A circular oil slick of uniform thickness contains 100cm3 of oil.
(a) The volume of the oil remains constant. Use the equation for the

volume of a cylinder to relate the thickness to the radius.
Solution. Let r be the radius, h the thickness. Then the volume is

V = πr2h. The volume here is 100, so here is an equation relating the
thickness to the radius:

πr2h = 100 .

(Also correct: h = 100

πr2 .)
(b) As the oil spreads the thickness is decreasing at the rate of 0.01

cm/min. At what rate is the radius of the slick increasing when it is 10cm?
Solution. Differentiate the equation from part (a) with respect to time,

t:

2πrh
dr

dt
+ πr2

dh

dt
= 0.

Solve for dr
dt

: after a little algebra, you get

dr

dt
=

−r

2h

dh

dt
.

I know that h = 100

πr2 , so when r = 10, h = 1

π
. I also know that dh

dt
= −0.01.

So
dr

dt
=

−10

1/2π
(−0.01) = 0.05π .
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