Mathematics 124

answers to Winter 2001 final exam

1. (a) Compute $\frac{d y}{d x}$ if $y=\frac{\ln (x)}{5 x^{3}+2}$.

Solution. Use the quotient rule:

$$
\frac{d y}{d x}=\frac{\left(5 x^{3}+2\right) \frac{1}{x}-\ln (x)\left(15 x^{2}\right)}{\left(5 x^{3}+2\right)^{2}}=\frac{5 x^{2}+\frac{2}{x}-15 x^{2} \ln (x)}{\left(5 x^{3}+2\right)^{2}} .
$$

(b) Let $\Phi(t)=t \tan ^{-1}(3 t)$. Compute $\Phi^{\prime}(t)$.

Solution. Product rule plus chain rule:

$$
\Phi^{\prime}(t)=\tan ^{-1}(3 t)+\frac{3 t}{(3 t)^{2}+1}=\tan ^{-1}(3 t)+\frac{3 t}{9 t^{2}+1}
$$

(c) Let $f(x)=\sec \left(e^{\sqrt{x}}\right)$ and compute $f^{\prime}(x)$.

Solution. Chain rule (several times):

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} e^{\sqrt{x}} \sec \left(e^{\sqrt{x}}\right) \tan \left(e^{\sqrt{x}}\right) .
$$

2. Let $f(x)=\frac{1}{2} x^{4}-2 x^{3}$.
(a) Determine the intervals in x where $f(x)$ is positive / negative, increasing / decreasing, concave up / concave down.

Solution. Factor $f(x): \quad f(x)=\frac{1}{2} x^{4}-2 x^{3}=\frac{1}{2} x^{3}(x-4)$. This is zero when $x=0$ and when $x=4$, and these are the only places $f(x)$ can change sign. When $x<0, f(x)$ is positive. When $0<x<4, f(x)$ is negative. When $x>4, f(x)$ is positive.

So: $f(x)$ is positive on the intervals $(-\infty, 0)$ and $(4, \infty)$. It's negative on $(0,4)$.
$f^{\prime}(x)=2 x^{3}-6 x^{2}=2 x^{2}(x-3)$. This is zero when $x=0$ and when $x=3$. When $x<0, f^{\prime}(x)$ is negative. It is also negative when $0<x<3$, and it is positive when $x>3$.

So: $f(x)$ is increasing on $(3, \infty)$. It is decreasing on $(-\infty, 0)$ and $(0,3)$. (Thus $f(x)$ has a local minimum at $x=3$.)
$f^{\prime \prime}(x)=6 x^{2}-12 x=6 x(x-2)$. This is zero when $x=0, x=2$. When $x<0, f^{\prime \prime}(x)$ is positive; it's negative when $0<x<2$, and it's positive when $x>2$.

So: $f(x)$ is concave up on $(-\infty, 0)$ and $(2, \infty)$. It's concave down on $(0,2)$. (Thus $x=0$ and $x=2$ are both inflection points.)
(b) Sketch a graph of $f(x)$.

Solution. First, we know $f(0)=0$ and $f(4)=0$. Since there is a minimum at $x=3$, compute $f(3): f(3)=-27 / 2=-13 \frac{1}{2}$. Since there is an inflection point at $x=2$, compute $f(2): f(2)=-8$. (And we may as well also compute $f(1)=-3 / 2$.)

3. A box has a square base and open top. It is made of wood which costs $\$ 3$ a square foot. The box must hold 4 cubic feet. What dimensions minimize the box?

Solution. Let h be the height of the box, x the width of the base (so the box is $h \times x \times x)$. The cost is 3 times the surface area, and we want to minimize the cost. Let C be the cost; then

$$
C=3\left(x^{2}+4 h x\right),
$$

because the bottom of the box is a square, $x \times x$, and there are four sides, each $h \times x$. The factor of three is because the wood costs $\$$ a square foot.

Also, since the volume is 4 cubic feet, we get the equation $4=x^{2} h$, so $h=4 / x^{2}$. Substitute this into the C equation:

$$
C=3 x^{2}+12 \frac{4}{x^{2}} x=3 x^{2}+\frac{48}{x} .
$$

Minimize this on the domain $x>0$ (since the width x can't be negative, because it's a length, or zero, because of the denominator):

$$
C^{\prime}=6 x-\frac{48}{x^{2}}=\frac{6 x^{3}-48}{x^{2}}=6 \frac{x^{3}-8}{x^{2}} .
$$

This is undefined when $x=0$, which is not in our domain. It is zero when $x^{3}=8$, which means $x=2$. So $x=2$ is the only critical point. Since $C^{\prime}<0$ when $x<2$ and $C^{\prime}>0$ when $x>2$, the cost function $C(x)$ has a local minimum at $x=2$; since $x=2$ is the unique critical point, S in fact has an absolute minimum there.

Finally (since $h=4 / x^{2}$), when $x=2, h=1$. These are the dimensions of the box.
4. Use implicit differentiation to find the slope $\frac{d y}{d x}$ of the curve given by

$$
x^{3}-x y^{2}-\cos y=1
$$

at the two points (π, π) and $(\pi,-\pi)$.
Solution. Implicitly differentiate:

$$
3 x^{2}-y^{2}-2 x y \frac{d y}{d x}+\frac{d y}{d x} \sin y=0 .
$$

Solve for $\frac{d y}{d x}$:

$$
\frac{d y}{d x}(-2 x y+\sin y)=-3 x^{2}+y^{2}
$$

so

$$
\frac{d y}{d x}=\frac{-3 x^{2}+y^{2}}{-2 x y+\sin y}
$$

At the point (π, π), this is

$$
\frac{-3 \pi^{2}+\pi^{2}}{-2 \pi^{2}+\sin \pi}=\frac{-2 \pi^{2}}{-2 \pi^{2}}=1 .
$$

At the point $(\pi,-\pi)$, this is

$$
\frac{-3 \pi^{2}+\pi^{2}}{2 \pi^{2}+\sin (-\pi)}=\frac{-2 \pi^{2}}{2 \pi^{2}}=--1 .
$$

(Notice that these answers make sense when compared to the picture.)
5. (a) $\lim _{x \rightarrow \infty}\left(\frac{\sin x}{\ln x}\right)$

Solution. The numerator oscillates between -1 and 1 . The denominator goes to ∞. The quotient of a number between -1 and 1 and a very large number is very small: the limit is 0 .
(b) $\lim _{x \rightarrow 1} \frac{x^{\pi}-1}{x^{\sqrt{2}}-1}$.

Solution. As x goes to 1 , the top and bottom both go to zero: this is an indeterminate form of the type $\frac{0}{0}$. So use L'Hôpital's rule:

$$
\lim _{x \rightarrow 1} \frac{x^{\pi}-1}{x^{\sqrt{2}}-1}=\lim _{x \rightarrow 1} \frac{\pi x^{\pi-1}}{\sqrt{2} x^{\sqrt{2}-1}}
$$

This second quotient is defined and continuous when $x=1$, so plug in $x=1$: the answer is $\frac{\pi}{\sqrt{2}}$.
6. Consider the function $f(x)= \begin{cases}1-\cos x & \text { if } x>0, \\ 0 & \text { if } x \leq 0 .\end{cases}$
(i) Is f continuous at $x=0$?
(ii) Is f^{\prime} defined at $x=0$?
(iii) Is $f^{\prime \prime}$ defined at $x=0$?

Solution. (i) Yes.

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 0=0
$$

and

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(1-\cos x)=0
$$

Since the right- and left-hand limits agree, $\lim _{x \rightarrow 0} f(x)=0=f(0)$: that is, the limit as x approaches 0 of $f(x)$ exists, and equals $f(0)$. That's the definition of continuity at $x=0$.
(ii) Yes. I can differentiate the pieces of the function, to get this:

$$
f^{\prime}(x)= \begin{cases}\sin x & \text { if } x>0 \\ 0 & \text { if } x<0\end{cases}
$$

When $x=0$, these two formulas agree (and are zero), so the derivative $f^{\prime}(0)$ exists (and equals zero).

Alternatively, the derivative at $x=0$ is defined by the formula

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}
$$

I'll investigate this limit by computing the right- and left-hand limits.

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{0-0}{x}=\lim _{x \rightarrow 0^{-}} 0=0
$$

Also,

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{(1-\cos x)-0}{x}=\lim _{x \rightarrow 0^{+}} \frac{1-\cos x}{x} .
$$

This last limit is an indeterminate form of type $\frac{0}{0}$, so compute it with L'Hôpital's rule: it is equal to

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin x}{1}=0
$$

(Alternatively, recognize this as the limit computing the derivative of $1-\cos x$ when $x=0$.) So the one-sided limits agree; therefore the ordinary limit exists. Therefore the derivative exists.
(iii) No. From the calculations in part (ii), I have a formula for $f^{\prime}(x)$:

$$
f^{\prime}(x)= \begin{cases}\sin x & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

This function has a "corner" at $x=0$; that is, it looks like this:

There is no tangent line at $x=0$, so the derivative of this function does not exist.
7. Let $f(x)=\sqrt{x+2}$, where $x \geq-2$. Find $f^{\prime}(2)$ using limits and the definition of the derivative.

Solution.

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{(2+h)+2}-\sqrt{2+2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-\sqrt{4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h} \frac{\sqrt{4+h}+2}{\sqrt{4+h}+2} \\
& =\lim _{h \rightarrow 0} \frac{4+h-4}{h(\sqrt{4+h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{4+h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{4+h}+2} .
\end{aligned}
$$

Now I can plug in $h=0$, to get $\frac{1}{\sqrt{4}+2}=\frac{1}{4}$.
Note: I can check this using derivative formulas: $f^{\prime}(x)=\frac{1}{2}(x+2)^{-1 / 2}$, so $f^{\prime}(2)=\frac{1}{2} \frac{1}{\sqrt{4}}=\frac{1}{4}$. (I'm allowed to use derivative formulas to check my work, just not to solve the problem.)
8. Calculamb: his height is given by

$$
f(t)=e^{t-1}(1-\cos 2 \pi t), \quad t \geq 0
$$

(a) Find a point where his velocity is 0 meters per second.

Solution. This will happen at each minimum and each maximum. From the graph, it looks like this happens when $t=0, t=1, t=2$, and $t=3$, as well as at some point t a bit larger than 0.5 , some t a bit larger than 1.5, and some t a bit larger than 2.5.

The formula for the velocity is

$$
\begin{aligned}
f^{\prime}(t) & =e^{t-1}(1-\cos 2 \pi t)+e^{t-1}(2 \pi \sin 2 \pi t) \\
& =e^{t-1}(1-\cos 2 \pi t+2 \pi \sin 2 \pi t) .
\end{aligned}
$$

When $t=0$, this is certainly 0 (since $\cos 0=1$ and $\sin 0=0$). So $t=0$ is one answer.
(Other possible answers: $t=1, t=2$, and $t=3$. It's hard to find the coordinates where the height hits a maximum.)
(b) What is Calculamb's acceleration at $t=2$ seconds?

Solution. Acceleration is the derivative of velocity:

$$
a(t)=f^{\prime \prime}(t)=e^{t-1}\left(1-\cos 2 \pi t+4 \pi \sin 2 \pi t+4 \pi^{2} \cos 2 \pi t\right)
$$

(after using the product rule and doing a little algebra). Now plug in $t=2$:

$$
f^{\prime \prime}(2)=e^{2-1}\left(1-\cos 4 \pi+4 \pi \sin 4 \pi+4 \pi^{2} \cos 4 \pi\right)=e\left(1-1+0+4 \pi^{2}\right)
$$

So the answer is $4 \pi^{2} e$.
Notice that this is positive, and the graph is concave up when $t=2$, so the answer is plausible.
(c) Is Calculamb's upward speed increasing, decreasing, or both, on the interval [2, 2.25]?

Solution. $f^{\prime \prime}(t)=e^{t-1}\left(1+\left(4 \pi^{2}-1\right) \cos 2 \pi t+4 \pi \sin 2 \pi t\right)$. When $2 \leq$ $t \leq 2.25,2 \pi t$ is between 2π and $2 \pi+\frac{\pi}{2}$. For this range of values, $\cos 2 \pi t$ and $\sin 2 \pi t$ both range between 0 and 1 . So $f^{\prime \prime}(t)$ is positive for all t in [2, 2.25]. Thus $f^{\prime}(t)$, which is the upward velocity, is increasing throughout the interval.
9. A circular oil slick of uniform thickness contains $100 \mathrm{~cm}^{3}$ of oil.
(a) The volume of the oil remains constant. Use the equation for the volume of a cylinder to relate the thickness to the radius.

Solution. Let r be the radius, h the thickness. Then the volume is $V=\pi r^{2} h$. The volume here is 100 , so here is an equation relating the thickness to the radius:

$$
\pi r^{2} h=100 \text {. }
$$

(Also correct: $h=\frac{100}{\pi r^{2}}$.)
(b) As the oil spreads the thickness is decreasing at the rate of 0.01 $\mathrm{cm} / \mathrm{min}$. At what rate is the radius of the slick increasing when it is 10 cm ?

Solution. Differentiate the equation from part (a) with respect to time, t :

$$
2 \pi r h \frac{d r}{d t}+\pi r^{2} \frac{d h}{d t}=0
$$

Solve for $\frac{d r}{d t}$: after a little algebra, you get

$$
\frac{d r}{d t}=\frac{-r}{2 h} \frac{d h}{d t}
$$

I know that $h=\frac{100}{\pi r^{2}}$, so when $r=10, h=\frac{1}{\pi}$. I also know that $\frac{d h}{d t}=-0.01$. So

$$
\frac{d r}{d t}=\frac{-10}{1 / 2 \pi}(-0.01)=0.05 \pi
$$

