Math 124 Exam 2 answers

20 November 2001

1. (20 points) Compute these derivatives:
(a) $\frac{d}{d x}(\tan (3 x))=$

Solution. $3 \sec ^{2}(3 x)$ (chain rule).
(b) If $y=x^{\sqrt{2 x}}$, then $y^{\prime}=$

Solution. Use logarithmic differentiation: take logs of both sides: $\ln y=\ln \left(x^{\sqrt{2 x}}\right)$, so $\ln y=\sqrt{2 x} \ln (x)$. Now differentiate:

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =(\sqrt{2 x})^{\prime} \ln (x)+\sqrt{2 x}(\ln (x))^{\prime} \\
& =\frac{1}{\sqrt{2 x}} \ln x+\frac{\sqrt{2 x}}{x}
\end{aligned}
$$

Solve for y^{\prime}, replacing y by $x^{\sqrt{2 x}}$:

$$
y^{\prime}=x^{\sqrt{2 x}}\left(\frac{1}{\sqrt{2 x}} \ln x+\frac{\sqrt{2 x}}{x}\right) .
$$

(There are various equivalent ways of writing the answer.)
(c) $\left(\frac{x^{2}+3}{e^{-x}-x}\right)^{\prime}=$

Solution ${ }^{\text {C }}$ Quotient rule:

$$
\frac{\left(e^{-x}-x\right)(2 x)-\left(x^{2}+3\right)\left(-e^{-x}-1\right)}{\left(e^{-x}-x\right)^{2}} .
$$

2. (20 points) Use implicit differentiation to find the x-coordinates of all points on the curve

$$
2 y e^{y}=x^{4}-2 x^{3}+x^{2}
$$

where the tangent line is horizontal.
Solution. Differentiate both sides (left side by the product rule, right side by the power rule):

$$
2 y^{\prime} e^{y}+2 y y^{\prime} e^{y}=4 x^{3}-6 x^{2}+2 x
$$

Solve for y^{\prime} :

$$
\begin{aligned}
y^{\prime} & =\frac{4 x^{3}-6 x^{2}+2 x}{2 e^{y}+2 y e^{y}} \\
& =\frac{2 x^{3}-3 x^{2}+x}{e^{y}+y e^{y}} .
\end{aligned}
$$

\qquad

The tangent line is horizontal when $y^{\prime}=0$. This quantity is zero when the numerator is zero-that is, when $2 x^{3}-3 x^{2}+x=0$. Factor out an $x: x\left(2 x^{2}-3 x+1\right)=0$. Factor the quadratic using the quadratic formula (or by eyeballing it): $x(2 x-1)(x-1)=0$. This is zero when $x=0, x=1 / 2$, or $x=1$.
3. (20 points) At 3:00, two cars start moving from the same point; one ("car A") heads due north, the other ("car B") due west. Car A maintains a constant speed of 40 kilometers per hour. Car B's speed varies, though. At 3:45 (that is, $3 / 4$ of an hour after they started), car B is stuck at a traffic light (not moving) 40 kilometers west of the starting point. How fast is the distance between the cars increasing at 3:45?
Solution. Let $z(t)$ be the distance between the two cars at t hour after 3:00. We want to know $\frac{d z}{d t}$. Let x be the distance from B to its starting point; let y be the distance from A to its starting point. Here's a picture.

So $z^{2}=x^{2}+y^{2}$. Differentiate with respect to t :

$$
2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}
$$

At 3:45, car A is 30 km north of its starting point: $y=30$. Also, it is moving at 40 kph : $\frac{d y}{d t}=40$. Car B is 40 km from its starting point: $x=40$. It is stationary, so $d x / d t=0$. Finally, by the Pythagorean theorem, $z=50$. Plug all these numbers in:

$$
2 \cdot 50 \frac{d z}{d t}=2 \cdot 40 \cdot 0+2 \cdot 30 \cdot 40
$$

So $\frac{d z}{d t}=30 \cdot 40 / 50=24$. The answer is 24 kph .
4. (20 points) A point moves along the y-axis in such a way that its position at time t is given by

$$
y(t)=5 t e^{-t^{2}}
$$

Assume $t \geq 0$.
(a) Find all times $t \geq 0$ when the acceleration of the particle is zero.

Solution. The acceleration is the second derivative of position, $y^{\prime \prime}$. The velocity is $y^{\prime}=5\left(e^{-t^{2}}-2 t^{2} e^{-t^{2}}\right)=5 e^{-t^{2}}\left(1-2 t^{2}\right)$, so $y^{\prime \prime}=5\left(e^{-t^{2}}(-4 t)-2 t(1-2 t) e^{-t^{2}}\right)=$

Name: \qquad
$5 e^{-t^{2}}\left(4 t^{3}-6 t\right)$. When is this zero? Since exponential functions are never zero, this is zero when $4 t^{3}-6 t=0$. Factor this polynomial: $2 t\left(2 t^{2}-3\right)=0$. The roots are $t=0, t=-\sqrt{3 / 2}$, and $t=\sqrt{3 / 2}$. Since the problem asked for times $t \geq 0$, the answer is $t=0, t=\sqrt{3 / 2}$.
(b) What is the velocity at those times?

Solution. I've already found the velocity: $y^{\prime}=5 e^{-t^{2}}\left(1-2 t^{2}\right)$. Plug in $t=0$: $y^{\prime}(0)=5$. Plug in $t=\sqrt{3 / 2}: y^{\prime}(\sqrt{3 / 2})=-10 e^{-3 / 2}$.
5. Two unrelated questions:
(a) (13 points) Compute the derivative of $\ln (\cos (\sqrt{x}))$.

Solution. Use the chain rule twice. The answer is:

$$
-\frac{1}{2} x^{-1 / 2} \sin (\sqrt{x}) \frac{1}{\cos (\sqrt{x})} .
$$

(b) (7 points) Use implicit differentiation to derive the formula for the derivative of one of the following functions (your choice): $\ln x, \log _{10} x, \tan ^{-1} x, \cot ^{-1} x, \sin ^{-1} x$. [Hint: let $y=f(x)$ where $f(x)$ is your chosen function, solve for x, and differentiate.]
Solution. I covered several of these (like $\ln x, \tan ^{-1} x$, and $\sin ^{-1} x$) in lecture, so you should have them in your notes. They are also covered in the book: see Sections 3.6 and 3.8. I'll derive the formula for $\left(\log _{10} x\right)^{\prime}$; the others are similar.

Let $y=\log _{10} x$. Then $10^{y}=x$. Differentiate (implicitly) with respect to x : $y^{\prime} 10^{y} \ln 10=1$. So

$$
y^{\prime}=\frac{1}{10^{y} \ln 10}=\frac{1}{x \ln 10}
$$

