Math 124 Exam 1 answers

23 October 2001

1. (20 points) Let $f(x)=\frac{1}{x-1}$. Find the equation of the line tangent to the curve $y=f(x)$ at the point $\left(3, \frac{1}{2}\right)$. You must use limits to do this problem. Do not use formulas from high school calculus.

Solution. To find the slope of the tangent line, I'll use the appropriate limit:

$$
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{(3+h)-1}-\frac{1}{3-1}}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h} .
$$

Put things over a common denominator:

$$
=\lim _{h \rightarrow 0} \frac{\frac{2-(2+h)}{2(2+h)}}{h}=\lim _{h \rightarrow 0} \frac{-h}{2(2+h) h} .
$$

Now cancel the h 's, at which point I can plug in $h=0$ to compute the limit:

$$
=\lim _{h \rightarrow 0} \frac{-1}{4+2 h}=\frac{-1}{4} .
$$

That's the slope of tangent line. It goes through the point $(3,1 / 2)$, so the equation is $y-1 / 2=$ $(-1 / 4)(x-3)$, which (after a bit of algebra) is

$$
y=-\frac{1}{4} x+\frac{5}{4} .
$$

2. (20 points) Determine if the following limits exist. If they exist, compute them. Justify your answers.
(a) $\lim _{x \rightarrow \infty}\left(\frac{1}{x}-\frac{1}{x+2}\right)$

Solution. As x goes to infinity, $1 / x$ and $1 /(x+2)$ both go to zero. So their difference goes to zero: the limit is 0 .
(b) $\lim _{x \rightarrow-1} \frac{x^{2}+3 x+2}{x+1}$

Solution. The numerator and denominator both go to zero as x goes to -1 , so I should look for some cancellation. This means: factor the numerator:

$$
\lim _{x \rightarrow-1} \frac{x^{2}+3 x+2}{x+1}=\lim _{x \rightarrow-1} \frac{(x+1)(x+2)}{x+1}=\lim _{x \rightarrow-1}(x+2)
$$

At this point, I can plug in $x=-1$ to get the answer: 1 .
(c) $\lim _{x \rightarrow \frac{\pi^{-}}{4}} \tan x$

Solution. Since $\tan x$ is continuous at $x=\pi / 4$, I can just plug it in to compute the limit: the answer is $\tan (\pi / 4)=1$.
\qquad
(d) $\lim _{x \rightarrow \frac{\pi}{2}} \sec x$

Solution. $\sec x$ is defined to be $1 /(\cos x)$. As x goes to $\pi / 2, \cos x$ goes to zero, so $\lim _{x \rightarrow \frac{\pi}{2}} \sec x$ does not exist. More precisely, as x goes to $\pi / 2$ from the left, $\sec x$ goes to ∞; as x goes to $\pi / 2$ from the right, $\sec x$ goes to $-\infty$. So the limit does not exist (and it is not ∞).
3. (7 points) Let $f(x)=2 x^{2}-1$. Find the point ($a, f(a)$) on the curve $y=f(x)$ at which the tangent line is perpendicular to the line $y=\frac{1}{2} x+1$. You must use limits to do this problem. Do not use formulas from high school calculus.
Solution. My approach is: find the slope of the tangent line at the point $(a, f(a))$; then I'll set it equal to -2 , so that it's perpendicular to the given line of slope $1 / 2$, and solve for a.
The slope of the tangent at $(a, f(a))$ is

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} & =\lim _{h \rightarrow 0} \frac{\left(2(a+h)^{2}-1\right)-\left(2(a)^{2}-1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 a^{2}+4 a h+2 h^{2}-1-2 a^{2}+1}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 a h+2 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 a+2 h}{1} \\
& =4 a .
\end{aligned}
$$

I want this to equal -2 , so a must be $-1 / 2$, in which case $f(a)=f(1 / 2)=-1 / 2$. So the answer is: the point $(1 / 2,-1 / 2)$.
4. (13 points) Here is a graph of an expontential function. Find a formula for this function.

Solution. I want a function of either the form $y=C e^{k x}$ or the form $y=C a^{x}$. The curve goes through the points $(3,1)$ and $(5,2)$. I'll do both cases.
$y=C e^{k x}$: because of the two points, I get $1=C e^{3 k}$ and $2=C e^{5 k}$. Divide the second equation by the first: $2=e^{2 k}$. Take logs of both sides: $\ln 2=2 k$. So $k=\ln 2$. Plug this back in to the first equation, $1=C e^{3 \ln 2}$, to find that $C=e^{-3 \ln 2}$. So the equation is

$$
y=e^{-3 \ln 2} e^{(\ln 2) x} .
$$

\qquad
$y=C a^{x}$: because of the two points, I get $1=C a^{3}$ and $2=C a^{5}$. Divide the second equation by the first: $2=a^{2}$, so $a=\sqrt{2}$. Plug this back in to the first equation, $1=C(\sqrt{2})^{3}$, to find that $C=1 / \sqrt{2}^{3}=1 / \sqrt{8}$. So the equation is

$$
y=\frac{1}{\sqrt{8}}(\sqrt{2})^{x}
$$

5. (20 points) Let $f(x)=\frac{x-2}{2 x+1}$.
(a) What is the domain of $f(x)$?

Solution. The only obstacle to $f(x)$ being defined is that it's a fraction, so its denominator might be zero. In fact, its denominator is zero when $x=-1 / 2$. At this point, $f(x)$ is not defined; its defined everywhere else. So the domain is all points except $x=-1 / 2$.
(b) Find a formula for $f^{-1}(x)$.

Solution. Let $y=(x-2) /(2 x+1)$ and solve for x in terms of $y:(2 \mathrm{x}+1) \mathrm{y}=\mathrm{x}-2$, so $2 x y+y=x-2$, so $2 x y-x=-2-y$, so $x=(-2-y) /(2 y-1)$. To express the answer, I'll switch the x 's and y 's (and cancel some minus signs):

$$
f^{-1}(x)=\frac{2+x}{1-2 x}
$$

6. (20 points) Let $f(x)= \begin{cases}1-x, & \text { if } x \leq 1, \\ \ln x, & \text { if } 1<x<2, \\ x^{2}-2, & \text { if } 2 \leq x .\end{cases}$
(a) Sketch the graph of $f(x)$ on the domain $-1 \leq x \leq 3$.

Solution.

\qquad
(b) Where is $f(x)$ continuous? Explain.

Solution. $1-x$ is continuous for all $x, \ln x$ is continuous whenever x is positive (which it is here, since I'm only look at $\ln x$ when $1<x<2$), and $x^{2}-2$ is continuous for all x. So the individual pieces of $f(x)$ are all continuous. So the only possible points of discontinuity are where the function switches from one definition to the next: the points $x=1$ and $x=2$. To determine continuity there, compute the right- and left-hand limits at those points; to compute these limits, plug these points into the function definition on each side of the points:

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(1-x)=1-1=0, \quad \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \ln x=\ln (1)=0 .
$$

So the function is continuous at $x=1$.

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \ln x=\ln (2), \quad \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{2}-2\right)=2^{2}-2=2
$$

Since $\ln (2) \neq 2$, the function is discontinuous at $x=2$. So the answer is $f(x)$ is continuous everywhere except $x=2$.

