Mathematics 124E, 124G
 answer to bonus problem

Here is the equation of an ellipse: $x^{2} / 9+y^{2} / 25=1$. Consider a point P lying on the ellipse in the first quadrant. Let L_{N} be the "normal line" through P. That is, L_{N} is the line through P which is perpendicular to the tangent line at P. Let x_{N} be the x-intercept of the normal line, and let y_{N} be its y-intercept. As P goes from $(3,0)$ to $(0,5)$, how do x_{N} and y_{N} behave?

First make a guess as to their behavior, just based on the picture and your intuition. Then use calculus to solve the problem. [It's probably easiest to use implicit differentiation.]

Solution. First, if I differentiate implicitly, I get this:

$$
\frac{d y}{d x}=-\frac{25 x}{9 y} .
$$

So if $P=\left(x_{0}, y_{0}\right)$ is a point on the ellipse, the slope of the tangent line at P is $-25 x_{0} / 9 y_{0}$. This means that the slope of L_{N} is $9 y_{0} / 25 x_{0}$, so I can write down the equation of L_{N} :

$$
y-y_{0}=\frac{9 y_{0}}{25 x_{0}}\left(x-x_{0}\right) .
$$

A little algebra yields this:

$$
y=\frac{9 y_{0}}{25 x_{0}} x+\frac{16}{25} y_{0} .
$$

The last term, $\frac{16}{25} y_{0}$, is the y-intercept y_{N}. As P goes from $(3,0)$ to $(0,5), y_{0}$ goes from 0 to 5 , so y_{N} goes from 0 to $16 / 5$. (When $y_{0}=5$, the normal line is the y-axis, so there is no y-intercept. So y_{N} actually lies in the interval $[0,16 / 5)$.)

To find the x-intercept x_{N}, set $y=0$ and solve for x. The result is:

$$
x_{N}=-\frac{16}{9} x_{0}
$$

Since x_{0} is ranging from 3 to $0, x_{N}$ goes from $-16 / 3$ to 0 . (Similarly, there is no x-intercept when $x_{0}=3$.)

