Mathematics 124E, 124G answer to bonus problem

Here is the equation of an ellipse: $x^2/9 + y^2/25 = 1$. Consider a point *P* lying on the ellipse in the first quadrant. Let L_N be the "normal line" through *P*. That is, L_N is the line through *P* which is perpendicular to the tangent line at *P*. Let x_N be the *x*-intercept of the normal line, and let y_N be its *y*-intercept. As *P* goes from (3,0) to (0,5), how do x_N and y_N behave?

First make a guess as to their behavior, just based on the picture and your intuition. Then use calculus to solve the problem. [It's probably easiest to use implicit differentiation.]

Solution. First, if I differentiate implicitly, I get this:

$$\frac{dy}{dx} = -\frac{25x}{9y}$$

So if $P = (x_0, y_0)$ is a point on the ellipse, the slope of the tangent line at *P* is $-25x_0/9y_0$. This means that the slope of L_N is $9y_0/25x_0$, so I can write down the equation of L_N :

$$y - y_0 = \frac{9y_0}{25x_0}(x - x_0).$$

A little algebra yields this:

$$y = \frac{9y_0}{25x_0}x + \frac{16}{25}y_0.$$

The last term, $\frac{16}{25}y_0$, is the *y*-intercept y_N . As *P* goes from (3,0) to (0,5), y_0 goes from 0 to 5, so y_N goes from 0 to 16/5. (When $y_0 = 5$, the normal line is the *y*-axis, so there is no *y*-intercept. So y_N actually lies in the interval [0, 16/5).)

To find the *x*-intercept x_N , set y = 0 and solve for *x*. The result is:

$$x_N = -\frac{16}{9}x_0.$$

Since x_0 is ranging from 3 to 0, x_N goes from -16/3 to 0. (Similarly, there is no *x*-intercept when $x_0 = 3$.)