
Math 404 Final Exam Solutions

Short answer questions.

1. State the first isomorphism theorem (for rings, not groups).

If ϕ : R→ S is a surjective ring homomorphism with kernel I, then ϕ induces an isomorphism
ϕ : R/I ∼= S.

2. Describe the Eisenstein criterion.

Suppose f(x) = anx
n + an−1x

n−1 + · · · + a0 is a polynomial with integer coefficients. If for
some prime number p, p does not divide an, p does divide an−1, . . . , a0, and p2 does not divide
a0, then f(x) is irreducible in Q[x].

3. Suppose that a real number α is constructible by straightedge and compass. What do you know
about its irreducible polynomial? Give me a few examples of numbers which are constructible
and numbers which are not (say, at least two examples of each sort).

Its irreducible polynomial must have degree 2k for some k. (This is not an “if and only if”
condition, by the way—there are algebraic numbers with irreducible polynomials of degree 4
which are not constructible.) Some constructible numbers: 0, 1, 1

2 ,
√

2. Some non-constructible
numbers: 3

√
2, π, e, cos 20◦.

Long answer questions.

4. Let F be a field. Consider this statement: a polynomial g(x) ∈ F [x] is irreducible if and only
if it has no roots. Is this always true, always false, or does it depend on the field? Justify your
answer.

As stated, this is false: over any field, every linear polynomial is irreducible, and every lin-
ear polynomial has a root. It might be reasonable to interpret the question as asking about
polynomials of degree at least two. In this case, certainly if a polynomial has a root, it is not
irreducible. The validity of the converse—if it has no roots, then it is irreducible—depends
on the field. For example, it’s true in C[x], because no polynomial of degree at least two is
irreducible, and every polynomial of degree at least two has a root. It is false in R[x], though:
(x2 + 1)2 has no roots in R, but is not irreducible.

5. Is it possible to construct a regular 9-sided polygon with straightedge and compass? If so,
describe a construction. If not, prove that it is impossible.

It is impossible. If you could construct a regular 9-sided polygon with straightedge and compass,
then you would have constructed a 40◦ angle. Since you can bisect any angle with straightedge
and compass, then you could construct a 20◦ angle. But this is impossible—we know that
cos 20◦ is not constructible.



6. Let R be a ring. Recall that an element p of R is prime if whenever p divides a product ab,
then p divides one of the factors: either p|a or p|b. An element q of R is irreducible if q can’t
be factored in any nontrivial way: if q = rs, then either r or s is a unit.

(a) Let R be an integral domain, and prove that every prime element of R is irreducible.
Let p ∈ R be prime, and suppose p = ab. I want to show that either a or b must be a
unit. Since p = ab, then p|ab, and since p is prime, I can conclude that either p|a or p|b.
Without loss of generality, suppose that p|a, say a = pr. Then p = ab = (pr)b. R is an
integral domain, so I can cancel p from both sides: 1 = rb. Thus b is a unit.

(b) Let R be a principal ideal domain, and prove that every irreducible element of R is prime.
Let q ∈ R be irreducible, and suppose q|ab. I want to show that either q|a or q|b. Since R
is a principal ideal domain, it’s probably a good idea to work with ideals. q|ab is equivalent
to (ab) ⊆ (q). I want to show that either (a) ⊆ (q) or (b) ⊆ (q). Look at the ideal (a, q).
This must be principal: (a, q) = (r) for some r ∈ R, in which case q is a multiple of r:
q = rs for some s. Since q is irreducible, either r is an associate of q, or r is a unit. If
r is an associate of q, then (r) = (q), and since a ∈ (r) = (q), I find that a is a multiple
of q, as desired. On the other hand, if r is a unit, then (a, q) = (r) = (1), so for some
u, v ∈ R, au + qv = 1. Multiply both sides by b: abu + qbv = b. q divides both terms on
the left-hand side, so q divides the right-hand side, as desired.

7. Prove that there are infinitely many primes congruent to 1 mod 4.

Assume there are only finitely many primes congruent to 1 mod 4, say p1, p2, . . . , pn. Consider
N = (2p1 . . . pn)2 + 1. This is not divisible by any of the pi’s, so it must have another prime
factor, p. N is an odd number, so p 6= 2. Since p divides it, then if m is the term in parentheses,
m is a root of x2 + 1 mod p. This polynomial has roots mod p only when p ≡ 1 mod 4, so
the prime factor is congruent to 1 mod 4, and it’s not one of the ones we started with. So the
original list was incomplete, so there must be infinitely many primes congruent to 1 mod 4.

Extra credit.

8. (a) For which of these fields F are there irreducible polynomials in F [x] of every positive
degree: Q, R, C, F2, F3, F5, . . . , Fp, . . . ? Prove that your answers are correct.
Answer: Q, Fp for all primes p.

(b) Determine all positive integers which can be written as the sum of two squares (squares
of integers, that is).
Answer: all positive integers n whose prime factorization is of this form:

n = pj11 · · · p
j`
` (qk1

1 . . . qkmm )2,

where each prime pi is either 2 or is congruent to 1 mod 4, and each prime qi is congruent
to 3 mod 4.


