Math 404 Final Exam Solutions

Short answer questions.

1. State the first isomorphism theorem (for rings, not groups).

If $\varphi: R \rightarrow S$ is a surjective ring homomorphism with kernel I, then φ induces an isomorphism $\bar{\varphi}: R / I \cong S$.
2. Describe the Eisenstein criterion.

Suppose $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ is a polynomial with integer coefficients. If for some prime number p, p does not divide a_{n}, p does divide a_{n-1}, \ldots, a_{0}, and p^{2} does not divide a_{0}, then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
3. Suppose that a real number α is constructible by straightedge and compass. What do you know about its irreducible polynomial? Give me a few examples of numbers which are constructible and numbers which are not (say, at least two examples of each sort).
Its irreducible polynomial must have degree 2^{k} for some k. (This is not an "if and only if" condition, by the way-there are algebraic numbers with irreducible polynomials of degree 4 which are not constructible.) Some constructible numbers: $0,1, \frac{1}{2}, \sqrt{2}$. Some non-constructible numbers: $\sqrt[3]{2}, \pi, e, \cos 20^{\circ}$.

Long answer questions.

4. Let F be a field. Consider this statement: a polynomial $g(x) \in F[x]$ is irreducible if and only if it has no roots. Is this always true, always false, or does it depend on the field? Justify your answer.

As stated, this is false: over any field, every linear polynomial is irreducible, and every linear polynomial has a root. It might be reasonable to interpret the question as asking about polynomials of degree at least two. In this case, certainly if a polynomial has a root, it is not irreducible. The validity of the converse - if it has no roots, then it is irreducible - depends on the field. For example, it's true in $\mathbb{C}[x]$, because no polynomial of degree at least two is irreducible, and every polynomial of degree at least two has a root. It is false in $\mathbb{R}[x]$, though: $\left(x^{2}+1\right)^{2}$ has no roots in \mathbb{R}, but is not irreducible.
5. Is it possible to construct a regular 9 -sided polygon with straightedge and compass? If so, describe a construction. If not, prove that it is impossible.

It is impossible. If you could construct a regular 9-sided polygon with straightedge and compass, then you would have constructed a 40° angle. Since you can bisect any angle with straightedge and compass, then you could construct a 20° angle. But this is impossible - we know that $\cos 20^{\circ}$ is not constructible.
6. Let R be a ring. Recall that an element p of R is prime if whenever p divides a product $a b$, then p divides one of the factors: either $p \mid a$ or $p \mid b$. An element q of R is irreducible if q can't be factored in any nontrivial way: if $q=r s$, then either r or s is a unit.
(a) Let R be an integral domain, and prove that every prime element of R is irreducible.

Let $p \in R$ be prime, and suppose $p=a b$. I want to show that either a or b must be a unit. Since $p=a b$, then $p \mid a b$, and since p is prime, I can conclude that either $p \mid a$ or $p \mid b$. Without loss of generality, suppose that $p \mid a$, say $a=p r$. Then $p=a b=(p r) b . R$ is an integral domain, so I can cancel p from both sides: $1=r b$. Thus b is a unit.
(b) Let R be a principal ideal domain, and prove that every irreducible element of R is prime.

Let $q \in R$ be irreducible, and suppose $q \mid a b$. I want to show that either $q \mid a$ or $q \mid b$. Since R is a principal ideal domain, it's probably a good idea to work with ideals. $q \mid a b$ is equivalent to $(a b) \subseteq(q)$. I want to show that either $(a) \subseteq(q)$ or $(b) \subseteq(q)$. Look at the ideal (a, q). This must be principal: $(a, q)=(r)$ for some $r \in R$, in which case q is a multiple of r : $q=r s$ for some s. Since q is irreducible, either r is an associate of q, or r is a unit. If r is an associate of q, then $(r)=(q)$, and since $a \in(r)=(q)$, I find that a is a multiple of q, as desired. On the other hand, if r is a unit, then $(a, q)=(r)=(1)$, so for some $u, v \in R, a u+q v=1$. Multiply both sides by $b: a b u+q b v=b . q$ divides both terms on the left-hand side, so q divides the right-hand side, as desired.
7. Prove that there are infinitely many primes congruent to $1 \bmod 4$.

Assume there are only finitely many primes congruent to $1 \bmod 4$, say $p_{1}, p_{2}, \ldots, p_{n}$. Consider $N=\left(2 p_{1} \ldots p_{n}\right)^{2}+1$. This is not divisible by any of the p_{i} 's, so it must have another prime factor, p. N is an odd number, so $p \neq 2$. Since p divides it, then if m is the term in parentheses, m is a root of $x^{2}+1 \bmod p$. This polynomial has roots $\bmod p$ only when $p \equiv 1 \bmod 4$, so the prime factor is congruent to $1 \bmod 4$, and it's not one of the ones we started with. So the original list was incomplete, so there must be infinitely many primes congruent to $1 \bmod 4$.

Extra credit.

8. (a) For which of these fields F are there irreducible polynomials in $F[x]$ of every positive degree: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_{2}, \mathbb{F}_{3}, \mathbb{F}_{5}, \ldots, \mathbb{F}_{p}, \ldots$? Prove that your answers are correct.
Answer: $\mathbb{Q}, \mathbb{F}_{p}$ for all primes p.
(b) Determine all positive integers which can be written as the sum of two squares (squares of integers, that is).
Answer: all positive integers n whose prime factorization is of this form:

$$
n=p_{1}^{j_{1}} \cdots p_{\ell}^{j_{\ell}}\left(q_{1}^{k_{1}} \cdots q_{m}^{k_{m}}\right)^{2},
$$

where each prime p_{i} is either 2 or is congruent to $1 \bmod 4$, and each prime q_{i} is congruent to $3 \bmod 4$.

