Math 404 Final Exam Solutions

Short answer questions.

1. State the first isomorphism theorem (for rings, not groups).

If ¢ : R — S is a surjective ring homomorphism with kernel I, then ¢ induces an isomorphism
p:R/I=S.

2. Describe the Eisenstein criterion.

Suppose f(z) = apz"™ + ap_12" 1 + --- 4 ag is a polynomial with integer coefficients. If for
some prime number p, p does not divide a,,, p does divide a,,_1, ..., ag, and p? does not divide
ap, then f(z) is irreducible in Q[x].

3. Suppose that a real number « is constructible by straightedge and compass. What do you know
about its irreducible polynomial? Give me a few examples of numbers which are constructible
and numbers which are not (say, at least two examples of each sort).

Its irreducible polynomial must have degree 2* for some k. (This is not an “if and only if”
condition, by the way—there are algebraic numbers with irreducible polynomials of degree 4
which are not constructible.) Some constructible numbers: 0, 1, %, V2. Some non-constructible
numbers: /2, 7, e, cos 20°.

Long answer questions.

4. Let F be a field. Consider this statement: a polynomial g(z) € F[z] is irreducible if and only
if it has no roots. Is this always true, always false, or does it depend on the field? Justify your
answer.

As stated, this is false: over any field, every linear polynomial is irreducible, and every lin-
ear polynomial has a root. It might be reasonable to interpret the question as asking about
polynomials of degree at least two. In this case, certainly if a polynomial has a root, it is not
irreducible. The validity of the converse—if it has no roots, then it is irreducible—depends
on the field. For example, it’s true in C[x], because no polynomial of degree at least two is
irreducible, and every polynomial of degree at least two has a root. It is false in R[z], though:
(2 + 1)? has no roots in R, but is not irreducible.

5. Is it possible to construct a regular 9-sided polygon with straightedge and compass? If so,
describe a construction. If not, prove that it is impossible.

It is impossible. If you could construct a regular 9-sided polygon with straightedge and compass,
then you would have constructed a 40° angle. Since you can bisect any angle with straightedge
and compass, then you could construct a 20° angle. But this is impossible—we know that
cos 20° is not constructible.



6. Let R be a ring. Recall that an element p of R is prime if whenever p divides a product ab,
then p divides one of the factors: either p|a or p|b. An element ¢ of R is irreducible if q can’t
be factored in any nontrivial way: if ¢ = rs, then either r or s is a unit.

(a)

Let R be an integral domain, and prove that every prime element of R is irreducible.

Let p € R be prime, and suppose p = ab. I want to show that either a or b must be a
unit. Since p = ab, then plab, and since p is prime, I can conclude that either p|a or p|b.
Without loss of generality, suppose that pla, say a = pr. Then p = ab = (pr)b. R is an
integral domain, so I can cancel p from both sides: 1 = rb. Thus b is a unit.

Let R be a principal ideal domain, and prove that every irreducible element of R is prime.

Let ¢ € R be irreducible, and suppose g|ab. I want to show that either g|a or ¢|b. Since R
is a principal ideal domain, it’s probably a good idea to work with ideals. g|ab is equivalent
to (ab) C (q). I want to show that either (a) C (q) or (b) C (q). Look at the ideal (a, q).
This must be principal: (a,q) = (r) for some r € R, in which case ¢ is a multiple of r:
q = rs for some s. Since ¢ is irreducible, either r is an associate of ¢, or r is a unit. If
r is an associate of ¢, then () = (¢), and since a € (r) = (g), I find that a is a multiple
of g, as desired. On the other hand, if r is a unit, then (a,q) = (r) = (1), so for some
u,v € R, au + qv = 1. Multiply both sides by b: abu + gbv = b. g divides both terms on
the left-hand side, so ¢ divides the right-hand side, as desired.

7. Prove that there are infinitely many primes congruent to 1 mod 4.

Assume there are only finitely many primes congruent to 1 mod 4, say p1, p2, ..., p,. Consider

N =

(2p1 ...pp)% + 1. This is not divisible by any of the p;’s, so it must have another prime

factor, p. N is an odd number, so p # 2. Since p divides it, then if m is the term in parentheses,
m is a root of £2 + 1 mod p. This polynomial has roots mod p only when p = 1 mod 4, so
the prime factor is congruent to 1 mod 4, and it’s not one of the ones we started with. So the
original list was incomplete, so there must be infinitely many primes congruent to 1 mod 4.

Extra credit.

8.

(a)

(b)

For which of these fields F' are there irreducible polynomials in F[z]| of every positive
degree: Q, R, C, IFo, F3, IF5, ..., [E,, ... 7 Prove that your answers are correct.

Answer: Q, [, for all primes p.

Determine all positive integers which can be written as the sum of two squares (squares
of integers, that is).

Answer: all positive integers n whose prime factorization is of this form:

j je [k
n:p{lp‘zf(qll qm )2’

where each prime p; is either 2 or is congruent to 1 mod 4, and each prime ¢; is congruent
to 3 mod 4.



