Math 404 Exam solutions

1. (a) Do problem 3 in the Miscellaneous exercises for Chapter 10.

SOLUTION: Fix elements a and b of R; I want to show that a + b = b+ a. Consider (a + b)(1 + 1).
Expanding one way, 1 get

(a+b)(1+1)=a(l+1)+b(1+1)=a+a+b+b.
Expanding the other way, I get

(a+b)(1+1)=(a+bl+(a+b)l=a+b+a+b
Soa+a+b+b=a+b+a+b Nowadd —a to both sides, on the left, and add —b to both sides, on

the right, to get a + b = b+ a, as desired.

(b) Consider the ring Z of integers. Given m,n € Z, show that (m) C (n) if and only if n divides m.
SoLuTION. If (m) C (n), then m € (n), so m is a multiple of n. In other words, n divides m.
Conversely, if n divides m, say m = nk, then every multiple of m is also a multiple of n: am = akn.
So every element of (m) is in (n); in other words, (m) C (n).

2. Do either part (a) or part (b). Do not do both.

(a) Do problem 2 in the Miscellaneous exercises for Chapter 10.
SOLUTION. (a) To verify the product rule, let f(z) = > ama™ and let g(x) = > byaz™. Now just
compute (fg)', fg', and f'g:
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This is equal to (fg)’.
To verify the chain rule, it’s probably a good idea to first notice that if g(x) is any polynomial, then
(g(x)™)" = mg(x)™ 1g/(x). This is easy to prove using the product rule and induction. Given this,

with f(z) = apma™,
)= am(gle)™

Zammg ) (2).

On the other hand, since f'(z) = mamxm_l,

flog=>Y"ammg(z)",

SO

so (feg) =(f"og)d

(b) Suppose that « is a multiple root of f(x); this means that (x—a)? divides f(z): f(z) = g(z)(z—a)?
for some polynomial g(z). Then by the product rule, f'(z) = ¢'(z)(z — a)? + 2g(z)(x — a): this is
divisible by z—q, so a is a root of f/(z). Conversely, suppose that « is a root of f(z) and of f'(x). Then
f(z) = (zr—a)g(x) for some g(z), and so f'(z) = g(z)+ (z — )¢’ (z). Plugin z = o f'(a) = g(cr) +0.



We are assuming that « is a root of f/(x), so o must be a root of g(z). Thus g(z) = (z — a)h(z) for
some h(z), so f(z) = (z — a)?h(x).

(c) £'® — z: the derivative of this is 1524 — 1 = —1 (we are working with coefficients in the field Fs,
so 5 =0, so 15 =0). —1 has no roots, so this polynomial has no roots in common with its derivative,
so it has no multiple roots. z'® — 22° + 1: the derivative is 15z — 102* = 0: every x is a root. So
every root of the polynomial is also a root of its derivative. We just need to see if the polynomial has
a root to finish the problem. Plug in z = 1: it’s a root, hence a multiple root.

Do problem 26 in Section 3 of Chapter 10.

SOLUTION. Here is a complete list of the ideals of R[[t]]: (1), (¢), (£?), ..., ("), ..., (0). Certainly
every one of these is an ideal; I have to show that these are the only ideals. A homework problem
(10.2.6) tells us that if a power series f(t) = ag + a1t + ast? + - - - has nonzero constant term ag, then
f(t) is a unit, in which case (f(¢)) = (1). This suggests a way to proceed: given a nonzero ideal I,
let n be the largest number so that t" divides every element of I. (For example, if I contains a power
series with a nonzero constant term, then n will be zero; if every power series in I has constant term
zero, then n will be at least 1.)

Then all the elements I look like f(t) = t"g(t) for some power series g(t). Thus I C (¢™). By our choice
of n, there is some power series fo(t) in I which is not divisible by t"*1, in which case fo(t) = t"go(t),
where go(t) has a nonzero constant term. But then go(¢) is a unit, and so has an inverse h(t), in which
case t" = f(t)h(t) is in I. Since t" € I, then (¢") C I. Thus (") = I.

3. Do either part (a) or part (b). Do not do both.

(a)

Do problem 29 in Section 3 of Chapter 10.

SOLUTION. Consider the ring R = Z and the ideals (2) and (9). Their union contains 2 and 9, but
not their sum 2 4+ 9 = 11. Thus their union is not closed under addition, and so is not an ideal.

Now let R be any ring, and let I and J be ideals of R. I want to show that I + J is an ideal. I have
to show that it’s a subgroup of R under addition. There are various ways to do this; one of them is to
show that I + J is nonempty, and to show that for all z,y € I+ J, x —y isin I 4+ J. Certainly I+ J is
nonempty, since it contains 0 = 0 4+ 0. Now let 2 and y be elements of I + J; this means that we can
write x as a sum z = a + b where a € I and b € J; similarly, y = ¢ 4+ d where ¢ € I and d € J. Then

r—y=(a+b)—(c+d)=(a—c)+ (b—ad).

Since [ is an ideal, a — ¢ € I; since J is an ideal, b — d € J. Thus the sum of these two is in I 4+ J, as
desired.

Also, T have to show that if x = a+bisin I + J (a and b as above) and if r € R, then rz € I + J.
Well, rx = ra 4+ rb, and ra € I because [ is an ideal, and rb € J because J is an ideal.

Describe the ring R[z]/(32% + 7). (As usual, R denotes the real numbers.)

SoLUTION. This ring is isomorphic to C. T’ll use the first isomorphism theorem to prove it. Define
a ring homomorphism ¢ : R[z] — C by ¢(f(x)) = f(iy/7/3). (In other words, ¢ is the substitution
homomorphism x + i+/7/3.) This is onto: any complex number a + bi is equal to a + bi\/7/31/3/7,
and so is equal to ¢(a + b\/S/—7x) The kernel of ¢ consists of all real polynomials which have i1/7/3
as a root. In particular, the kernel contains 322 4 7, so it contains the ideal (322 + 7). Also, if f(x) is
a real polynomial with z\/7/—3 as a root, then it also has —i\/7/73 as a root, and so is divisible by

(x —i\/7/3)(z +i\/7/3) = 2® + 7/3.

So it’s divisible by 322 + 7. Therefore the kernel is contained in the ideal (322 4+ 7). Now apply the
first isomorphism theorem.

4. Let R be a ring and let I be an ideal. The radical of I is the set

VI ={reR : some power of 7 is in I }.

(Do both parts.)



(a)

Show that /T is an ideal.

SoLuTION. First Il show that /T is a subgroup under addition. First of all, v/I contains 0: an
element r of R is in v/T if and only some power of r is in I. Well, 0! = 0 is in I, so 0 € v/I. Next,
suppose that = € \/T; this means that 2™ € I for some n. (—z)" = (&1)z"; since z" is in I, so is
(+1)z". Thus —z is in v/I. Finally, suppose that z and y are two elements of v/I. I have to show that
x +y € V1. Suppose that 2™ € I and y" € I; then I claim that (x 4+ 3)™*™ ! is in I (in which case
T+ yisin \/.7) I know that

m+n—1

(x_’_y)ernfl — Z Clxzym+n 1—1
=0

where ¢; is some binomial coefficient that I don’t care about. I'll break this into two sums:

m+n—1
(w+ym+nl E:czzm+nlz+§:cxzm+nlz

In the first sum, every term is a multiple of y"*—an element of I. In the second sum, every term is a
multiple of z"™—an element of I. Hence the whole sum is in 1.

Second, I have to show that if z € v/T and r € R, then rz € VI. If z € V/I, then 2" € I for some n.
Then r"z" € I, because I is an ideal. But r"2" = (rz)", so ra € V1.

Let R =Z and I = (8) What is 1/ (8)7
SOLUTION V(8 (2). For every even number 2n (2n) = 8n3 € (8). Since some power of 2n is
n (8), I can conclude that 2n € /(8). Thus (2) C 1/(8). To show the other inclusion, assume that

m € 1/ (8). Then some power of m is in (8): some power of m is divisible by 8. Then m can’t be odd:
m must be divisible by 2, so m € (2). Thus /(8) C (2).

5. Let F be a field. A polynomial f(z) in Fx] is irreducible if f(x) can’t be factored in any nontrivial way:
if f(x) = g(z)h(x) with g(z), h(x) € F[z], then either g(x) or h(z) is a constant. For example, 2% + 1 is
irreducible in the ring R[z], but it’s not irreducible in Cl[z].

(Do both parts.)

(a)

Let p be a prime number and let F, denote the field Z/pZ. If f(x) € F,[z] is an irreducible polynomial
of degree n, show that E,[z]/(f(x)) is a field with p™ elements.

SoLUTION. To show that F,[z]/(f(x)) is a field, it suffices to show that (f(x)) is a maximal ideal of
F,[z]. Suppose that (f(z)) is contained in an ideal I. Every ideal in Fy[z] is principal, so I = (g(x))
for some polynomial g(z). Since (f(z)) C (g(x)), I can conclude that f(x) is a multiple of g(z):
f(z) = g(x)h(x). Since f(zx) is irreducible, either g(x) is a constant, in which case (g(z)) = (1), or
h(zx) is a constant, in which case h(z) is a unit so (f(z)) = (g(x)). Thus (f(z)) is a maximal ideal,
and F,[z]/(f(x)) is a field.

Note that I can multiply f(z) by a nonzero constant ¢ to get a monic polynomial m(z): m(z) = cf(x).
Then (f(z)) = (m(z)), so F,z]/(f(z)) = E,[z]/(m(x)). By a result from class (and in the book),
there is a bijection between E,[z]/(m(z)) and length n vectors (ao, ..., an—1) with entries in F,. Since
F, has p elements, there are p" such vectors. Thus F,[z]/(f(z)) has p™ elements.

Use the result from part (a) to construct a field with 9 elements.

SoLuTION. If I can find a degree 2 irreducible polynomial in F3[z], I can apply part (a). I claim
that 22 + 1 is irreducible, so that F3[z]/(z? + 1) is a field with 9 elements. To verify that 22 + 1 is
irreducible, I have to show that it can’t be factored. Since it has degree 2, the only nontrivial way to
factor it would be as a product of linear polynomials; hence it factors if and only if it has roots. It’s
easy to check that it doesn’t have any roots: just plug in 0, 1, and 2—you never get 0.



