
Math 404 Exam solutions

1. (a) Do problem 3 in the Miscellaneous exercises for Chapter 10.
Solution: Fix elements a and b of R; I want to show that a + b = b + a. Consider (a + b)(1 + 1).
Expanding one way, I get

(a+ b)(1 + 1) = a(1 + 1) + b(1 + 1) = a+ a+ b+ b.

Expanding the other way, I get

(a+ b)(1 + 1) = (a+ b)1 + (a+ b)1 = a+ b+ a+ b.

So a+ a+ b+ b = a+ b+ a+ b. Now add −a to both sides, on the left, and add −b to both sides, on
the right, to get a+ b = b+ a, as desired.

(b) Consider the ring Z of integers. Given m,n ∈ Z, show that (m) ⊆ (n) if and only if n divides m.
Solution. If (m) ⊆ (n), then m ∈ (n), so m is a multiple of n. In other words, n divides m.
Conversely, if n divides m, say m = nk, then every multiple of m is also a multiple of n: am = akn.
So every element of (m) is in (n); in other words, (m) ⊆ (n).

2. Do either part (a) or part (b). Do not do both.

(a) Do problem 2 in the Miscellaneous exercises for Chapter 10.
Solution. (a) To verify the product rule, let f(x) =

∑
amx

m and let g(x) =
∑
bnx

n. Now just
compute (fg)′, fg′, and f ′g:

(fg)′ = (
∑
k

∑
i+j=k

aibjx
i+j)′ =

∑
k

∑
i+j=k

(i+ j)aibjxi+j−1,

fg′ = (
∑
m

amx
m)(
∑
n

nbnx
n−1) =

∑
k

∑
i+j=k

aijbjx
i+j−1,

f ′g = (
∑
m

mamx
m−1)(

∑
n

bnx
n) =

∑
k

∑
i+j=k

iaibjx
i+j−1,

so
fg′ + f ′g =

∑
k

∑
i+j=k

(aijbj + iaibj)xi+j−1 =
∑
k

∑
i+j=k

(i+ j)aibjxi+j−1.

This is equal to (fg)′.
To verify the chain rule, it’s probably a good idea to first notice that if g(x) is any polynomial, then
(g(x)m)′ = mg(x)m−1g′(x). This is easy to prove using the product rule and induction. Given this,
with f(x) =

∑
amx

m,
f ◦ g(x) =

∑
am(g(x))m,

so
(f ◦ g)′ =

∑
ammg(x)m−1g′(x).

On the other hand, since f ′(x) =
∑
mamx

m−1,

f ′ ◦ g =
∑

ammg(x)m−1,

so (f ◦ g)′ = (f ′ ◦ g)g′.
(b) Suppose that α is a multiple root of f(x); this means that (x−α)2 divides f(x): f(x) = g(x)(x−α)2

for some polynomial g(x). Then by the product rule, f ′(x) = g′(x)(x − α)2 + 2g(x)(x − α): this is
divisible by x−α, so α is a root of f ′(x). Conversely, suppose that α is a root of f(x) and of f ′(x). Then
f(x) = (x−α)g(x) for some g(x), and so f ′(x) = g(x)+(x−α)g′(x). Plug in x = α: f ′(α) = g(α)+0.



We are assuming that α is a root of f ′(x), so α must be a root of g(x). Thus g(x) = (x− α)h(x) for
some h(x), so f(x) = (x− α)2h(x).
(c) x15 − x: the derivative of this is 15x14 − 1 = −1 (we are working with coefficients in the field F5,
so 5 = 0, so 15 = 0). −1 has no roots, so this polynomial has no roots in common with its derivative,
so it has no multiple roots. x15 − 2x5 + 1: the derivative is 15x14 − 10x4 = 0: every x is a root. So
every root of the polynomial is also a root of its derivative. We just need to see if the polynomial has
a root to finish the problem. Plug in x = 1: it’s a root, hence a multiple root.

(b) Do problem 26 in Section 3 of Chapter 10.
Solution. Here is a complete list of the ideals of R[[t]]: (1), (t), (t2), . . . , (tn), . . . , (0). Certainly
every one of these is an ideal; I have to show that these are the only ideals. A homework problem
(10.2.6) tells us that if a power series f(t) = a0 + a1t+ a2t

2 + · · · has nonzero constant term a0, then
f(t) is a unit, in which case (f(t)) = (1). This suggests a way to proceed: given a nonzero ideal I,
let n be the largest number so that tn divides every element of I. (For example, if I contains a power
series with a nonzero constant term, then n will be zero; if every power series in I has constant term
zero, then n will be at least 1.)
Then all the elements I look like f(t) = tng(t) for some power series g(t). Thus I ⊆ (tn). By our choice
of n, there is some power series f0(t) in I which is not divisible by tn+1, in which case f0(t) = tng0(t),
where g0(t) has a nonzero constant term. But then g0(t) is a unit, and so has an inverse h(t), in which
case tn = f(t)h(t) is in I. Since tn ∈ I, then (tn) ⊆ I. Thus (tn) = I.

3. Do either part (a) or part (b). Do not do both.

(a) Do problem 29 in Section 3 of Chapter 10.
Solution. Consider the ring R = Z and the ideals (2) and (9). Their union contains 2 and 9, but
not their sum 2 + 9 = 11. Thus their union is not closed under addition, and so is not an ideal.
Now let R be any ring, and let I and J be ideals of R. I want to show that I + J is an ideal. I have
to show that it’s a subgroup of R under addition. There are various ways to do this; one of them is to
show that I +J is nonempty, and to show that for all x, y ∈ I +J , x− y is in I +J . Certainly I +J is
nonempty, since it contains 0 = 0 + 0. Now let x and y be elements of I + J ; this means that we can
write x as a sum x = a+ b where a ∈ I and b ∈ J ; similarly, y = c+ d where c ∈ I and d ∈ J . Then

x− y = (a+ b)− (c+ d) = (a− c) + (b− d).

Since I is an ideal, a− c ∈ I; since J is an ideal, b− d ∈ J . Thus the sum of these two is in I + J , as
desired.
Also, I have to show that if x = a + b is in I + J (a and b as above) and if r ∈ R, then rx ∈ I + J .
Well, rx = ra+ rb, and ra ∈ I because I is an ideal, and rb ∈ J because J is an ideal.

(b) Describe the ring R[x]/(3x2 + 7). (As usual, R denotes the real numbers.)
Solution. This ring is isomorphic to C. I’ll use the first isomorphism theorem to prove it. Define
a ring homomorphism ϕ : R[x] → C by ϕ(f(x)) = f(i

√
7/3). (In other words, ϕ is the substitution

homomorphism x 7→ i
√

7/3.) This is onto: any complex number a+ bi is equal to a+ bi
√

7/3
√

3/7,
and so is equal to ϕ(a+ b

√
3/7x). The kernel of ϕ consists of all real polynomials which have i

√
7/3

as a root. In particular, the kernel contains 3x2 + 7, so it contains the ideal (3x2 + 7). Also, if f(x) is
a real polynomial with i

√
7/3 as a root, then it also has −i

√
7/3 as a root, and so is divisible by

(x− i
√

7/3)(x+ i
√

7/3) = x2 + 7/3.

So it’s divisible by 3x2 + 7. Therefore the kernel is contained in the ideal (3x2 + 7). Now apply the
first isomorphism theorem.

4. Let R be a ring and let I be an ideal. The radical of I is the set
√
I = { r ∈ R : some power of r is in I }.

(Do both parts.)



(a) Show that
√
I is an ideal.

Solution. First I’ll show that
√
I is a subgroup under addition. First of all,

√
I contains 0: an

element r of R is in
√
I if and only some power of r is in I. Well, 01 = 0 is in I, so 0 ∈

√
I. Next,

suppose that x ∈
√
I; this means that xn ∈ I for some n. (−x)n = (±1)xn; since xn is in I, so is

(±1)xn. Thus −x is in
√
I. Finally, suppose that x and y are two elements of

√
I. I have to show that

x + y ∈
√
I. Suppose that xm ∈ I and yn ∈ I; then I claim that (x + y)m+n−1 is in I (in which case

x+ y is in
√
I). I know that

(x+ y)m+n−1 =
m+n−1∑
i=0

cix
iym+n−1−i

where ci is some binomial coefficient that I don’t care about. I’ll break this into two sums:

(x+ y)m+n−1 =
m−1∑
i=0

cix
iym+n−1−i +

m+n−1∑
i=m

cix
iym+n−1−i.

In the first sum, every term is a multiple of yn—an element of I. In the second sum, every term is a
multiple of xm—an element of I. Hence the whole sum is in I.
Second, I have to show that if x ∈

√
I and r ∈ R, then rx ∈

√
I. If x ∈

√
I, then xn ∈ I for some n.

Then rnxn ∈ I, because I is an ideal. But rnxn = (rx)n, so rx ∈
√
I.

(b) Let R = Z and I = (8). What is
√

(8)?
Solution.

√
(8) = (2). For every even number 2n, (2n)3 = 8n3 ∈ (8). Since some power of 2n is

in (8), I can conclude that 2n ∈
√

(8). Thus (2) ⊆
√

(8). To show the other inclusion, assume that
m ∈

√
(8). Then some power of m is in (8): some power of m is divisible by 8. Then m can’t be odd:

m must be divisible by 2, so m ∈ (2). Thus
√

(8) ⊆ (2).

5. Let F be a field. A polynomial f(x) in F [x] is irreducible if f(x) can’t be factored in any nontrivial way:
if f(x) = g(x)h(x) with g(x), h(x) ∈ F [x], then either g(x) or h(x) is a constant. For example, x2 + 1 is
irreducible in the ring R[x], but it’s not irreducible in C[x].

(Do both parts.)

(a) Let p be a prime number and let Fp denote the field Z/pZ. If f(x) ∈ Fp[x] is an irreducible polynomial
of degree n, show that Fp[x]/(f(x)) is a field with pn elements.
Solution. To show that Fp[x]/(f(x)) is a field, it suffices to show that (f(x)) is a maximal ideal of
Fp[x]. Suppose that (f(x)) is contained in an ideal I. Every ideal in Fp[x] is principal, so I = (g(x))
for some polynomial g(x). Since (f(x)) ⊆ (g(x)), I can conclude that f(x) is a multiple of g(x):
f(x) = g(x)h(x). Since f(x) is irreducible, either g(x) is a constant, in which case (g(x)) = (1), or
h(x) is a constant, in which case h(x) is a unit so (f(x)) = (g(x)). Thus (f(x)) is a maximal ideal,
and Fp[x]/(f(x)) is a field.
Note that I can multiply f(x) by a nonzero constant c to get a monic polynomial m(x): m(x) = cf(x).
Then (f(x)) = (m(x)), so Fp[x]/(f(x)) = Fp[x]/(m(x)). By a result from class (and in the book),
there is a bijection between Fp[x]/(m(x)) and length n vectors (a0, . . . , an−1) with entries in Fp. Since
Fp has p elements, there are pn such vectors. Thus Fp[x]/(f(x)) has pn elements.

(b) Use the result from part (a) to construct a field with 9 elements.
Solution. If I can find a degree 2 irreducible polynomial in F3[x], I can apply part (a). I claim
that x2 + 1 is irreducible, so that F3[x]/(x2 + 1) is a field with 9 elements. To verify that x2 + 1 is
irreducible, I have to show that it can’t be factored. Since it has degree 2, the only nontrivial way to
factor it would be as a product of linear polynomials; hence it factors if and only if it has roots. It’s
easy to check that it doesn’t have any roots: just plug in 0, 1, and 2—you never get 0.


