Math 404 Exam solutions

1. (a) Do problem 3 in the Miscellaneous exercises for Chapter 10.

Solution: Fix elements a and b of R; I want to show that $a+b=b+a$. Consider $(a+b)(1+1)$. Expanding one way, I get

$$
(a+b)(1+1)=a(1+1)+b(1+1)=a+a+b+b
$$

Expanding the other way, I get

$$
(a+b)(1+1)=(a+b) 1+(a+b) 1=a+b+a+b
$$

So $a+a+b+b=a+b+a+b$. Now add $-a$ to both sides, on the left, and add $-b$ to both sides, on the right, to get $a+b=b+a$, as desired.
(b) Consider the ring \mathbf{Z} of integers. Given $m, n \in \mathbf{Z}$, show that $(m) \subseteq(n)$ if and only if n divides m.

Solution. If $(m) \subseteq(n)$, then $m \in(n)$, so m is a multiple of n. In other words, n divides m. Conversely, if n divides m, say $m=n k$, then every multiple of m is also a multiple of n : $a m=a k n$. So every element of (m) is in (n); in other words, $(m) \subseteq(n)$.
2. Do either part (a) or part (b). Do not do both.
(a) Do problem 2 in the Miscellaneous exercises for Chapter 10.

Solution. (a) To verify the product rule, let $f(x)=\sum a_{m} x^{m}$ and let $g(x)=\sum b_{n} x^{n}$. Now just compute $(f g)^{\prime}, f g^{\prime}$, and $f^{\prime} g$:

$$
\begin{aligned}
& (f g)^{\prime}=\left(\sum_{k} \sum_{i+j=k} a_{i} b_{j} x^{i+j}\right)^{\prime}=\sum_{k} \sum_{i+j=k}(i+j) a_{i} b_{j} x^{i+j-1}, \\
& f g^{\prime}=\left(\sum_{m} a_{m} x^{m}\right)\left(\sum_{n} n b_{n} x^{n-1}\right)=\sum_{k} \sum_{i+j=k} a_{i} j b_{j} x^{i+j-1}, \\
& f^{\prime} g=\left(\sum_{m} m a_{m} x^{m-1}\right)\left(\sum_{n} b_{n} x^{n}\right)=\sum_{k} \sum_{i+j=k} i a_{i} b_{j} x^{i+j-1},
\end{aligned}
$$

so

$$
f g^{\prime}+f^{\prime} g=\sum_{k} \sum_{i+j=k}\left(a_{i} j b_{j}+i a_{i} b_{j}\right) x^{i+j-1}=\sum_{k} \sum_{i+j=k}(i+j) a_{i} b_{j} x^{i+j-1} .
$$

This is equal to $(f g)^{\prime}$.
To verify the chain rule, it's probably a good idea to first notice that if $g(x)$ is any polynomial, then $\left(g(x)^{m}\right)^{\prime}=m g(x)^{m-1} g^{\prime}(x)$. This is easy to prove using the product rule and induction. Given this, with $f(x)=\sum a_{m} x^{m}$,

$$
f \circ g(x)=\sum a_{m}(g(x))^{m}
$$

so

$$
(f \circ g)^{\prime}=\sum a_{m} m g(x)^{m-1} g^{\prime}(x) .
$$

On the other hand, since $f^{\prime}(x)=\sum m a_{m} x^{m-1}$,

$$
f^{\prime} \circ g=\sum a_{m} m g(x)^{m-1}
$$

so $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$.
(b) Suppose that α is a multiple root of $f(x)$; this means that $(x-\alpha)^{2}$ divides $f(x): f(x)=g(x)(x-\alpha)^{2}$ for some polynomial $g(x)$. Then by the product rule, $f^{\prime}(x)=g^{\prime}(x)(x-\alpha)^{2}+2 g(x)(x-\alpha)$: this is divisible by $x-\alpha$, so α is a root of $f^{\prime}(x)$. Conversely, suppose that α is a root of $f(x)$ and of $f^{\prime}(x)$. Then $f(x)=(x-\alpha) g(x)$ for some $g(x)$, and so $f^{\prime}(x)=g(x)+(x-\alpha) g^{\prime}(x)$. Plug in $x=\alpha: f^{\prime}(\alpha)=g(\alpha)+0$.

We are assuming that α is a root of $f^{\prime}(x)$, so α must be a root of $g(x)$. Thus $g(x)=(x-\alpha) h(x)$ for some $h(x)$, so $f(x)=(x-\alpha)^{2} h(x)$.
(c) $x^{15}-x$: the derivative of this is $15 x^{14}-1=-1$ (we are working with coefficients in the field \mathbf{F}_{5}, so $5=0$, so $15=0$). -1 has no roots, so this polynomial has no roots in common with its derivative, so it has no multiple roots. $x^{15}-2 x^{5}+1$: the derivative is $15 x^{14}-10 x^{4}=0$: every x is a root. So every root of the polynomial is also a root of its derivative. We just need to see if the polynomial has a root to finish the problem. Plug in $x=1$: it's a root, hence a multiple root.
(b) Do problem 26 in Section 3 of Chapter 10.

Solution. Here is a complete list of the ideals of $\mathbf{R}[[t]]:(1),(t),\left(t^{2}\right), \ldots,\left(t^{n}\right), \ldots,(0)$. Certainly every one of these is an ideal; I have to show that these are the only ideals. A homework problem (10.2.6) tells us that if a power series $f(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots$ has nonzero constant term a_{0}, then $f(t)$ is a unit, in which case $(f(t))=(1)$. This suggests a way to proceed: given a nonzero ideal I, let n be the largest number so that t^{n} divides every element of I. (For example, if I contains a power series with a nonzero constant term, then n will be zero; if every power series in I has constant term zero, then n will be at least 1.)
Then all the elements I look like $f(t)=t^{n} g(t)$ for some power series $g(t)$. Thus $I \subseteq\left(t^{n}\right)$. By our choice of n, there is some power series $f_{0}(t)$ in I which is not divisible by t^{n+1}, in which case $f_{0}(t)=t^{n} g_{0}(t)$, where $g_{0}(t)$ has a nonzero constant term. But then $g_{0}(t)$ is a unit, and so has an inverse $h(t)$, in which case $t^{n}=f(t) h(t)$ is in I. Since $t^{n} \in I$, then $\left(t^{n}\right) \subseteq I$. Thus $\left(t^{n}\right)=I$.
3. Do either part (a) or part (b). Do not do both.
(a) Do problem 29 in Section 3 of Chapter 10.

Solution. Consider the ring $R=\mathbf{Z}$ and the ideals (2) and (9). Their union contains 2 and 9 , but not their sum $2+9=11$. Thus their union is not closed under addition, and so is not an ideal.
Now let R be any ring, and let I and J be ideals of R. I want to show that $I+J$ is an ideal. I have to show that it's a subgroup of R under addition. There are various ways to do this; one of them is to show that $I+J$ is nonempty, and to show that for all $x, y \in I+J, x-y$ is in $I+J$. Certainly $I+J$ is nonempty, since it contains $0=0+0$. Now let x and y be elements of $I+J$; this means that we can write x as a sum $x=a+b$ where $a \in I$ and $b \in J$; similarly, $y=c+d$ where $c \in I$ and $d \in J$. Then

$$
x-y=(a+b)-(c+d)=(a-c)+(b-d) .
$$

Since I is an ideal, $a-c \in I$; since J is an ideal, $b-d \in J$. Thus the sum of these two is in $I+J$, as desired.
Also, I have to show that if $x=a+b$ is in $I+J$ (a and b as above) and if $r \in R$, then $r x \in I+J$. Well, $r x=r a+r b$, and $r a \in I$ because I is an ideal, and $r b \in J$ because J is an ideal.
(b) Describe the ring $\mathbf{R}[x] /\left(3 x^{2}+7\right)$. (As usual, \mathbf{R} denotes the real numbers.)

Solution. This ring is isomorphic to \mathbf{C}. I'll use the first isomorphism theorem to prove it. Define a ring homomorphism $\varphi: \mathbf{R}[x] \rightarrow \mathbf{C}$ by $\varphi(f(x))=f(i \sqrt{7 / 3}$). (In other words, φ is the substitution homomorphism $x \mapsto i \sqrt{7 / 3}$.) This is onto: any complex number $a+b i$ is equal to $a+b i \sqrt{7 / 3} \sqrt{3 / 7}$, and so is equal to $\varphi(a+b \sqrt{3 / 7} x)$. The kernel of φ consists of all real polynomials which have $i \sqrt{7 / 3}$ as a root. In particular, the kernel contains $3 x^{2}+7$, so it contains the ideal $\left(3 x^{2}+7\right)$. Also, if $f(x)$ is a real polynomial with $i \sqrt{7 / 3}$ as a root, then it also has $-i \sqrt{7 / 3}$ as a root, and so is divisible by

$$
(x-i \sqrt{7 / 3})(x+i \sqrt{7 / 3})=x^{2}+7 / 3 .
$$

So it's divisible by $3 x^{2}+7$. Therefore the kernel is contained in the ideal $\left(3 x^{2}+7\right)$. Now apply the first isomorphism theorem.
4. Let R be a ring and let I be an ideal. The radical of I is the set

$$
\sqrt{I}=\{r \in R: \text { some power of } r \text { is in } I\} .
$$

(Do both parts.)
(a) Show that \sqrt{I} is an ideal.

Solution. First I'll show that \sqrt{I} is a subgroup under addition. First of all, \sqrt{I} contains 0 : an element r of R is in \sqrt{I} if and only some power of r is in I. Well, $0^{1}=0$ is in I, so $0 \in \sqrt{I}$. Next, suppose that $x \in \sqrt{I}$; this means that $x^{n} \in I$ for some $n . ~(-x)^{n}=(\pm 1) x^{n}$; since x^{n} is in I, so is $(\pm 1) x^{n}$. Thus $-x$ is in \sqrt{I}. Finally, suppose that x and y are two elements of \sqrt{I}. I have to show that $x+y \in \sqrt{I}$. Suppose that $x^{m} \in I$ and $y^{n} \in I$; then I claim that $(x+y)^{m+n-1}$ is in I (in which case $x+y$ is in $\sqrt{I})$. I know that

$$
(x+y)^{m+n-1}=\sum_{i=0}^{m+n-1} c_{i} x^{i} y^{m+n-1-i}
$$

where c_{i} is some binomial coefficient that I don't care about. I'll break this into two sums:

$$
(x+y)^{m+n-1}=\sum_{i=0}^{m-1} c_{i} x^{i} y^{m+n-1-i}+\sum_{i=m}^{m+n-1} c_{i} x^{i} y^{m+n-1-i}
$$

In the first sum, every term is a multiple of y^{n}-an element of I. In the second sum, every term is a multiple of x^{m}-an element of I. Hence the whole sum is in I.
Second, I have to show that if $x \in \sqrt{I}$ and $r \in R$, then $r x \in \sqrt{I}$. If $x \in \sqrt{I}$, then $x^{n} \in I$ for some n. Then $r^{n} x^{n} \in I$, because I is an ideal. But $r^{n} x^{n}=(r x)^{n}$, so $r x \in \sqrt{I}$.
(b) Let $R=\mathbf{Z}$ and $I=(8)$. What is $\sqrt{(8)}$?

Solution. $\sqrt{(8)}=(2)$. For every even number $2 n,(2 n)^{3}=8 n^{3} \in(8)$. Since some power of $2 n$ is in (8), I can conclude that $2 n \in \sqrt{(8)}$. Thus $(2) \subseteq \sqrt{(8)}$. To show the other inclusion, assume that $m \in \sqrt{(8)}$. Then some power of m is in (8): some power of m is divisible by 8 . Then m can't be odd: m must be divisible by 2 , so $m \in(2)$. Thus $\sqrt{(8)} \subseteq(2)$.
5. Let F be a field. A polynomial $f(x)$ in $F[x]$ is irreducible if $f(x)$ can't be factored in any nontrivial way: if $f(x)=g(x) h(x)$ with $g(x), h(x) \in F[x]$, then either $g(x)$ or $h(x)$ is a constant. For example, $x^{2}+1$ is irreducible in the ring $\mathbf{R}[x]$, but it's not irreducible in $\mathbf{C}[x]$.
(Do both parts.)
(a) Let p be a prime number and let \mathbf{F}_{p} denote the field $\mathbf{Z} / p \mathbf{Z}$. If $f(x) \in \mathbf{F}_{p}[x]$ is an irreducible polynomial of degree n, show that $\mathbf{F}_{p}[x] /(f(x))$ is a field with p^{n} elements.
Solution. To show that $\mathbf{F}_{p}[x] /(f(x))$ is a field, it suffices to show that $(f(x))$ is a maximal ideal of $\mathbf{F}_{p}[x]$. Suppose that $(f(x))$ is contained in an ideal I. Every ideal in $\mathbf{F}_{p}[x]$ is principal, so $I=(g(x))$ for some polynomial $g(x)$. Since $(f(x)) \subseteq(g(x))$, I can conclude that $f(x)$ is a multiple of $g(x)$: $f(x)=g(x) h(x)$. Since $f(x)$ is irreducible, either $g(x)$ is a constant, in which case $(g(x))=(1)$, or $h(x)$ is a constant, in which case $h(x)$ is a unit so $(f(x))=(g(x))$. Thus $(f(x))$ is a maximal ideal, and $\mathbf{F}_{p}[x] /(f(x))$ is a field.
Note that I can multiply $f(x)$ by a nonzero constant c to get a monic polynomial $m(x): m(x)=c f(x)$. Then $(f(x))=(m(x))$, so $\mathbf{F}_{p}[x] /(f(x))=\mathbf{F}_{p}[x] /(m(x))$. By a result from class (and in the book), there is a bijection between $\mathbf{F}_{p}[x] /(m(x))$ and length n vectors (a_{0}, \ldots, a_{n-1}) with entries in \mathbf{F}_{p}. Since \mathbf{F}_{p} has p elements, there are p^{n} such vectors. Thus $\mathbf{F}_{p}[x] /(f(x))$ has p^{n} elements.
(b) Use the result from part (a) to construct a field with 9 elements.

Solution. If I can find a degree 2 irreducible polynomial in $\mathbf{F}_{3}[x]$, I can apply part (a). I claim that $x^{2}+1$ is irreducible, so that $\mathbf{F}_{3}[x] /\left(x^{2}+1\right)$ is a field with 9 elements. To verify that $x^{2}+1$ is irreducible, I have to show that it can't be factored. Since it has degree 2 , the only nontrivial way to factor it would be as a product of linear polynomials; hence it factors if and only if it has roots. It's easy to check that it doesn't have any roots: just plug in 0,1 , and 2 -you never get 0 .

