
Mathematics 403 Final Exam Solutions

1. Let A be a realn×n matrix. Prove that the following are equivalent:

(i) A is orthogonal (meaning thatAt = A−1, or equivalently,AtA = I ).

(ii) The columns ofA are mutually orthogonal unit vectors (with respect to the stan-
dard dot product).

(iii) A preserves the dot product (meaning that(X ·Y) = (AX ·AY) for all X,Y ∈Rn).

SOLUTION. I’ll start by showing (i)⇐⇒ (ii). Let v1, v2, . . . ,vn denote the columns
of A. The(i, j)-entry ofAtA is the dot product of theith row ofAt with the jth column
of A. Of course, theith row of At is the same as theith column ofA, so the(i, j)-entry
of AtA is (vi ·v j). ThusAtA = I if and only if

(vi ·v j) =

{
1 if i = j,

0 if i 6= j.

In other words,AtA = I if and only if the vectorsv1, . . . , vn are mutually orthogonal
unit vectors.

Now I’ll show (i) =⇒ (iii).

(AX ·AY) = (AX)tAY = XtAtAY,

so if AtA = I , this equalsXtY = (X ·Y), as desired.
Finally, I’ll show (iii) =⇒ (ii). Given (iii), I know that(ei ·ej) = (Aei ·Aej), butAei

andAej are theith and jth columns ofA, respectively. Since the vectorse1, . . . ,en are
orthonormal, then so are the vectorsAe1 = v1, . . . ,Aen = vn.

2. Draw a wallpaper pattern with a cyclic group for its point group; draw a wallpa-
per pattern with a dihedral group for its point group.

SOLUTION. See page 173 for lots of examples. The cyclic group pictures don’t
have any reflections; the dihedral group pictures will have reflections.

3(a). Let G be a group,Sa G-set,x an element ofS. Recall that theorbit of x, Ox,
is this subset ofS:

Ox = {y∈ S : y = gx for someg∈G}.

Thestabilizerof x, Gx, is this subgroup ofG:

Gx = {h∈G : hx= x}.

Define a mapφ : G/Gx−→Ox by φ(aGx) = ax. Prove thatφ is a well-defined bijection.
SOLUTION. To show thatφ is well-defined, I have to show that ifaGx = bGx, then

φ(aGx) = φ(bGx); i.e., I have to show thatax = bx. Well, aGx = bGx if and only if
b−1a∈Gx, in which case(b−1a)x = x. “Multiply” both sides byb: ax= bx, as desired.

Running this argument backwards shows that ifφ(aGx) = φ(bGx), thenaGx = bGx:
φ is one-to-one.

Finally, I have to show thatφ is onto. Giveny∈ Ox, theny = gx for someg∈ G;
thusy = φ(gGx).
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3(b). Let p be a prime number. Recall that ap-groupis a group which has orderpn

for somen. Prove that the center of ap-group has order larger than 1.
SOLUTION. Let G be ap-group, and consider the class equation forG:

pn = 1+ (other terms).

Each of the other terms must divide the order ofG, and so must bepi for somei ≤ n. p
divides the left-hand side andp divides each termpi wherei ≥ 1, butp doesn’t divide
1, so there must be more than one 1 on the right side of the equation: the class equation
must look like

pn = 1+1+ · · ·+1︸ ︷︷ ︸
j

+(other terms),

where here the other terms are of the formpi with 1≤ i ≤ n. The numberj must
be larger than 1. (In fact, it must be a multiple ofp, but I don’t really care about
that right now.) Now, remember that the terms in the class equation are the sizes of
conjugacy classes. If the conjugacy class of an elementx has exactly one element in it,
that element must bex (since every element is always conjugate to itself:x = 1x1−1).
Thusgxg−1 = x for everyg∈G; equivalently,gx= xg; equivalently,x is in the center
of G. Thus the center ofG has j elements, wherej ≥ 2.

4. Let V be a finite-dimensional real vector space and let〈 , 〉 be a symmetric
positive definite bilinear form onV. For any subspaceW of V, letW⊥ be the orthogonal
complement ofW:

W⊥ = {u : 〈u,w〉= 0 for all w∈W}.

Show thatV = W⊕W⊥; in other words, show:
(a) W∩W⊥ = 0.
SOLUTION. Assume thatw ∈W∩W⊥. Sincew ∈W⊥, thenw is orthogonal to

everything inW; in particular,〈w,w〉 = 0. Since the form is positive definite, though,
〈w,w〉 is positive for any nonzero vectorw; thusw must be zero. So the only vector in
bothW andW⊥ is the zero vector.

(b) Every vectorv ∈ V can be written in the formv = w+ u wherew ∈W and
u∈W⊥. [Hint: choose an orthonormal basis forW.]

SOLUTION. Let w1, . . . , wr be an orthonormal basis forW. (I mean orthonormal
with respect to the form〈 , 〉. I know that there is an orthonormal basis since the form
is positive definite—use the Gram-Schmidt procedure, for instance.) I want to write

v = c1w1 + · · ·+crwr +u,

whereu∈W⊥. In other words, I want to choose the scalarsci so that

v−c1w1−·· ·−crwr ∈W⊥.

If I want to check that a vector is inW⊥, it suffices to check that it’s orthogonal to each
wi , so I compute this:

〈wi ,v−c1w1−·· ·−crwr〉= 〈wi ,v〉−ci〈wi ,wi〉= 〈wi ,v〉−ci .
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(I’m using the fact that thewi ’s are orthonormal.) So if I want this to be zero, I set
ci = 〈wi ,v〉.

In other words, for anyv∈V,

u = v−
r

∑
i=1
〈wi ,v〉wi ∈W⊥,

sov can be written as the sum of something inW (the sum above) with something in
W⊥ (the vectoru).

5. Let A be a real symmetricn× n matrix. We know that there is an invertible
matrix Q so thatQAQt is diagonal, such that each diagonal entry is either 1,−1, or 0.
Recall that in this situation, thesignatureof A is the pair of numbers(p,m), wherep
is the number of 1’s on the diagonal ofQAQt , andm is the number of−1’s. Show that
p is equal to the number of positive eigenvalues ofA andm is equal to the number of
negative eigenvalues. [Hint: use the spectral theorem.]

SOLUTION. By the spectral theorem, there is an orthogonal matrixPso thatPAPt =
PAP−1 is diagonal, with the eigenvalues as the diagonal entries. Letλ1, . . . , λn be the
eigenvalues. Define a matrixC as follows:C is diagonal, and the(i, i)-entry is

1/
√
|λi | if λi 6= 0,

1 if λi = 0.

ThenC is invertible andCt = C. Now look at(CP)A(CP)t = C(PAPt)Ct : sincePAPt is
diagonal withith diagonal entryλi , thenC(PAPt)Ct is diagonal withith diagonal entry

1 if λi > 0,
−1 if λi < 0,
0 if λi = 0.

CP is invertible, so letQ = CP: thenQAQt is of the right form, and it has signature
(p,m), wherep is the number of positive eigenvalues ofA andm is the number of
negative eigenvalues.

6. Let U(n) be the set of complexn×n unitary matrices. Show that the product of
two unitary matrices is unitary, and the inverse of a unitary matrix is unitary; in other
words, show thatU(n) is a subgroup ofGLn(C).

SOLUTION. Recall that a matrixA is unitary if and only ifAA∗ = I . If A andB
are unitary, then(AB)(AB)∗ = ABB∗A∗ = A(BB∗)A∗ = A(I)A∗ = I , soAB is unitary.
If A is unitary, thenA is invertible withA−1 = A∗; I need to check thatA∗ is unitary:
A∗(A∗)∗ = A∗A. We know from last quarter that ifC andD are square matrices with
CD = I , thenDC = I ; thusA∗A = I , as desired.

7. Let A be a real symmetric matrix, and define a bilinear form〈 , 〉 on Rn by
〈X,Y〉= XtAY. Of course, there is also the ordinary dot product(X ·Y) = XtY.

True or false: IfA is a real symmetric matrix, then the eigenvectors forA are
orthogonal with respect to both the ordinary dot product( ·) and the bilinear form〈 , 〉.
Give a proof or a counterexample.
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SOLUTION. This is true. The spectral theorem says that the eigenvectors are or-
thogonal with respect to the ordinary dot product. Now assume thatX andY are eigen-
vectors, withAY = λY. Then

〈X,Y〉= XtAY = Xt(λY) = λ(XtY) = λ(X ·Y).

SinceX andY are orthogonal with respect to the ordinary dot product, this is zero;
hence they’re orthogonal with respect to the form defined byA, too.

8. Describe the Gram-Schmidt procedure.
SOLUTION. This is a procedure for constructing orthonormal bases, given a sym-

metric positive definite bilinear form on a finite-dimensional real vector spaceV. More
precisely, you start with any basis forV, and the Gram-Schmidt procedure tells you
how to alter it, inductively, to get an orthonormal basis.

Even more precisely, supposeV is a vector space with bilinear form〈 , 〉, satisfying
the conditions above. Let(v1, . . . ,vn) be a basis forV. To construct an orthonormal
basis(w1, . . . ,wn), first normalizev1: let

w1 =
1√
〈v1,v1〉

v1.

Thenw1 is a unit vector.
Suppose now that we’ve constructed mutually orthogonal unit vectorsw1, . . . ,wk−1

out of thevi ’s. Define a vectorw as follows:

w = vk−
k−1

∑
i=1
〈vk,wi〉wi .

Thenw is orthogonal to eachwi , so normalize it to getwk:

wk =
1√
〈w,w〉

w.
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