Mathematics 403 Final Exam Solutions

- **1.** Let *A* be a real $n \times n$ matrix. Prove that the following are equivalent:
- (i) A is orthogonal (meaning that $A^t = A^{-1}$, or equivalently, $A^t A = I$).
- (ii) The columns of *A* are mutually orthogonal unit vectors (with respect to the standard dot product).
- (iii) A preserves the dot product (meaning that $(X \cdot Y) = (AX \cdot AY)$ for all $X, Y \in \mathbf{R}^n$).

SOLUTION. I'll start by showing (i) \iff (ii). Let $v_1, v_2, ..., v_n$ denote the columns of *A*. The (i, j)-entry of A^tA is the dot product of the *i*th row of A^t with the *j*th column of *A*. Of course, the *i*th row of A^t is the same as the *i*th column of *A*, so the (i, j)-entry of A^tA is $(v_i \cdot v_j)$. Thus $A^tA = I$ if and only if

$$(v_i \cdot v_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

In other words, $A^t A = I$ if and only if the vectors v_1, \ldots, v_n are mutually orthogonal unit vectors.

Now I'll show (i) \Longrightarrow (iii).

$$(AX \cdot AY) = (AX)^t AY = X^t A^t AY,$$

so if $A^t A = I$, this equals $X^t Y = (X \cdot Y)$, as desired.

Finally, I'll show (iii) \implies (ii). Given (iii), I know that $(e_i \cdot e_j) = (Ae_i \cdot Ae_j)$, but Ae_i and Ae_j are the *i*th and *j*th columns of A, respectively. Since the vectors e_1, \ldots, e_n are orthonormal, then so are the vectors $Ae_1 = v_1, \ldots, Ae_n = v_n$.

2. Draw a wallpaper pattern with a cyclic group for its point group; draw a wallpaper pattern with a dihedral group for its point group.

SOLUTION. See page 173 for lots of examples. The cyclic group pictures don't have any reflections; the dihedral group pictures will have reflections.

3(a). Let *G* be a group, *S* a *G*-set, *x* an element of *S*. Recall that the *orbit* of *x*, O_x , is this subset of *S*:

$$O_x = \{y \in S : y = gx \text{ for some } g \in G\}.$$

The *stabilizer* of x, G_x , is this subgroup of G:

$$G_x = \{h \in G : hx = x\}.$$

Define a map $\phi: G/G_x \longrightarrow O_x$ by $\phi(aG_x) = ax$. Prove that ϕ is a well-defined bijection. SOLUTION. To show that ϕ is well-defined, I have to show that if $aG_x = bG_x$, then

 $\phi(aG_x) = \phi(bG_x)$; i.e., I have to show that ax = bx. Well, $aG_x = bG_x$ if and only if $b^{-1}a \in G_x$, in which case $(b^{-1}a)x = x$. "Multiply" both sides by b: ax = bx, as desired. Running this argument backwards shows that if $\phi(aG_x) = \phi(bG_x)$, then $aG_x = bG_x$:

 ϕ is one-to-one. Finally, I have to show that ϕ is onto. Given $y \in O_x$, then y = gx for some $g \in G$; thus $y = \phi(gG_x)$. **3(b).** Let *p* be a prime number. Recall that a *p*-group is a group which has order p^n for some *n*. Prove that the center of a *p*-group has order larger than 1.

SOLUTION. Let *G* be a *p*-group, and consider the class equation for *G*:

$$p^n = 1 + (\text{other terms}).$$

Each of the other terms must divide the order of *G*, and so must be p^i for some $i \le n$. *p* divides the left-hand side and *p* divides each term p^i where $i \ge 1$, but *p* doesn't divide 1, so there must be more than one 1 on the right side of the equation: the class equation must look like

$$p^n = \underbrace{1+1+\dots+1}_{j}$$
 +(other terms),

where here the other terms are of the form p^i with $1 \le i \le n$. The number *j* must be larger than 1. (In fact, it must be a multiple of *p*, but I don't really care about that right now.) Now, remember that the terms in the class equation are the sizes of conjugacy classes. If the conjugacy class of an element *x* has exactly one element in it, that element must be *x* (since every element is always conjugate to itself: $x = 1x1^{-1}$). Thus $gxg^{-1} = x$ for every $g \in G$; equivalently, gx = xg; equivalently, *x* is in the center of *G*. Thus the center of *G* has *j* elements, where $j \ge 2$.

4. Let *V* be a finite-dimensional real vector space and let \langle , \rangle be a symmetric positive definite bilinear form on *V*. For any subspace *W* of *V*, let W^{\perp} be the orthogonal complement of *W*:

$$W^{\perp} = \{ u : \langle u, w \rangle = 0 \text{ for all } w \in W \}.$$

Show that $V = W \oplus W^{\perp}$; in other words, show:

(a) $W \cap W^{\perp} = 0$.

SOLUTION. Assume that $w \in W \cap W^{\perp}$. Since $w \in W^{\perp}$, then *w* is orthogonal to everything in *W*; in particular, $\langle w, w \rangle = 0$. Since the form is positive definite, though, $\langle w, w \rangle$ is positive for any nonzero vector *w*; thus *w* must be zero. So the only vector in both *W* and W^{\perp} is the zero vector.

(b) Every vector $v \in V$ can be written in the form v = w + u where $w \in W$ and $u \in W^{\perp}$. [Hint: choose an orthonormal basis for *W*.]

SOLUTION. Let w_1, \ldots, w_r be an orthonormal basis for W. (I mean orthonormal with respect to the form \langle , \rangle . I know that there is an orthonormal basis since the form is positive definite—use the Gram-Schmidt procedure, for instance.) I want to write

$$v = c_1 w_1 + \dots + c_r w_r + u,$$

where $u \in W^{\perp}$. In other words, I want to choose the scalars c_i so that

$$v-c_1w_1-\cdots-c_rw_r\in W^{\perp}$$
.

If I want to check that a vector is in W^{\perp} , it suffices to check that it's orthogonal to each w_i , so I compute this:

$$\langle w_i, v - c_1 w_1 - \dots - c_r w_r \rangle = \langle w_i, v \rangle - c_i \langle w_i, w_i \rangle = \langle w_i, v \rangle - c_i.$$

(I'm using the fact that the w_i 's are orthonormal.) So if I want this to be zero, I set $c_i = \langle w_i, v \rangle$.

In other words, for any $v \in V$,

$$u = v - \sum_{i=1}^{r} \langle w_i, v \rangle w_i \in W^{\perp},$$

so v can be written as the sum of something in W (the sum above) with something in W^{\perp} (the vector u).

5. Let *A* be a real symmetric $n \times n$ matrix. We know that there is an invertible matrix *Q* so that QAQ^t is diagonal, such that each diagonal entry is either 1, -1, or 0. Recall that in this situation, the *signature* of *A* is the pair of numbers (p,m), where *p* is the number of 1's on the diagonal of QAQ^t , and *m* is the number of -1's. Show that *p* is equal to the number of positive eigenvalues of *A* and *m* is equal to the number of negative eigenvalues. [Hint: use the spectral theorem.]

SOLUTION. By the spectral theorem, there is an orthogonal matrix *P* so that $PAP^{t} = PAP^{-1}$ is diagonal, with the eigenvalues as the diagonal entries. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues. Define a matrix *C* as follows: *C* is diagonal, and the (i,i)-entry is

$$\begin{array}{ll} 1/\sqrt{|\lambda_i|} & \text{if } \lambda_i \neq 0, \\ 1 & \text{if } \lambda_i = 0. \end{array}$$

Then *C* is invertible and $C^t = C$. Now look at $(CP)A(CP)^t = C(PAP^t)C^t$: since PAP^t is diagonal with *i*th diagonal entry λ_i , then $C(PAP^t)C^t$ is diagonal with *i*th diagonal entry

$$1 \quad \text{if } \lambda_i > 0, \\ -1 \quad \text{if } \lambda_i < 0, \\ 0 \quad \text{if } \lambda_i = 0. \end{cases}$$

CP is invertible, so let Q = CP: then QAQ' is of the right form, and it has signature (p,m), where p is the number of positive eigenvalues of A and m is the number of negative eigenvalues.

6. Let U(n) be the set of complex $n \times n$ unitary matrices. Show that the product of two unitary matrices is unitary, and the inverse of a unitary matrix is unitary; in other words, show that U(n) is a subgroup of $GL_n(\mathbb{C})$.

SOLUTION. Recall that a matrix A is unitary if and only if $AA^* = I$. If A and B are unitary, then $(AB)(AB)^* = ABB^*A^* = A(BB^*)A^* = A(I)A^* = I$, so AB is unitary. If A is unitary, then A is invertible with $A^{-1} = A^*$; I need to check that A^* is unitary: $A^*(A^*)^* = A^*A$. We know from last quarter that if C and D are square matrices with CD = I, then DC = I; thus $A^*A = I$, as desired.

7. Let A be a real symmetric matrix, and define a bilinear form \langle , \rangle on \mathbb{R}^n by $\langle X, Y \rangle = X^t A Y$. Of course, there is also the ordinary dot product $(X \cdot Y) = X^t Y$.

True or false: If *A* is a real symmetric matrix, then the eigenvectors for *A* are orthogonal with respect to both the ordinary dot product (\cdot) and the bilinear form \langle , \rangle . Give a proof or a counterexample.

SOLUTION. This is true. The spectral theorem says that the eigenvectors are orthogonal with respect to the ordinary dot product. Now assume that *X* and *Y* are eigenvectors, with $AY = \lambda Y$. Then

$$\langle X, Y \rangle = X^t A Y = X^t (\lambda Y) = \lambda (X^t Y) = \lambda (X \cdot Y).$$

Since X and Y are orthogonal with respect to the ordinary dot product, this is zero; hence they're orthogonal with respect to the form defined by A, too.

8. Describe the Gram-Schmidt procedure.

SOLUTION. This is a procedure for constructing orthonormal bases, given a symmetric positive definite bilinear form on a finite-dimensional real vector space V. More precisely, you start with any basis for V, and the Gram-Schmidt procedure tells you how to alter it, inductively, to get an orthonormal basis.

Even more precisely, suppose V is a vector space with bilinear form \langle , \rangle , satisfying the conditions above. Let (v_1, \ldots, v_n) be a basis for V. To construct an orthonormal basis (w_1, \ldots, w_n) , first normalize v_1 : let

$$w_1 = \frac{1}{\sqrt{\langle v_1, v_1 \rangle}} v_1.$$

Then w_1 is a unit vector.

Suppose now that we've constructed mutually orthogonal unit vectors w_1, \ldots, w_{k-1} out of the v_i 's. Define a vector w as follows:

$$w = v_k - \sum_{i=1}^{k-1} \langle v_k, w_i \rangle w_i.$$

Then w is orthogonal to each w_i , so normalize it to get w_k :

$$w_k = \frac{1}{\sqrt{\langle w, w \rangle}} w.$$