Mathematics 403 Final Exam Solutions

1. Let A be a real $n \times n$ matrix. Prove that the following are equivalent:
(i) A is orthogonal (meaning that $A^{t}=A^{-1}$, or equivalently, $A^{t} A=I$).
(ii) The columns of A are mutually orthogonal unit vectors (with respect to the standard dot product).
(iii) A preserves the dot product (meaning that $(X \cdot Y)=(A X \cdot A Y)$ for all $\left.X, Y \in \mathbf{R}^{n}\right)$.

Solution. I'll start by showing (i) \Longleftrightarrow (ii). Let $v_{1}, v_{2}, \ldots, v_{n}$ denote the columns of A. The (i, j)-entry of $A^{t} A$ is the dot product of the i th row of A^{t} with the j th column of A. Of course, the i th row of A^{t} is the same as the i th column of A, so the (i, j)-entry of $A^{t} A$ is $\left(v_{i} \cdot v_{j}\right)$. Thus $A^{t} A=I$ if and only if

$$
\left(v_{i} \cdot v_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

In other words, $A^{t} A=I$ if and only if the vectors v_{1}, \ldots, v_{n} are mutually orthogonal unit vectors.

Now I'll show (i) \Longrightarrow (iii).

$$
(A X \cdot A Y)=(A X)^{t} A Y=X^{t} A^{t} A Y
$$

so if $A^{t} A=I$, this equals $X^{t} Y=(X \cdot Y)$, as desired.
Finally, I'll show (iii) \Longrightarrow (ii). Given (iii), I know that $\left(e_{i} \cdot e_{j}\right)=\left(A e_{i} \cdot A e_{j}\right)$, but $A e_{i}$ and $A e_{j}$ are the i th and j th columns of A, respectively. Since the vectors e_{1}, \ldots, e_{n} are orthonormal, then so are the vectors $A e_{1}=v_{1}, \ldots, A e_{n}=v_{n}$.
2. Draw a wallpaper pattern with a cyclic group for its point group; draw a wallpaper pattern with a dihedral group for its point group.

Solution. See page 173 for lots of examples. The cyclic group pictures don't have any reflections; the dihedral group pictures will have reflections.

3(a). Let G be a group, S a G-set, x an element of S. Recall that the orbit of x, O_{x}, is this subset of S :

$$
O_{x}=\{y \in S: y=g x \text { for some } g \in G\}
$$

The stabilizer of x, G_{x}, is this subgroup of G :

$$
G_{x}=\{h \in G: h x=x\} .
$$

Define a map $\phi: G / G_{x} \longrightarrow O_{x}$ by $\phi\left(a G_{x}\right)=a x$. Prove that ϕ is a well-defined bijection.
Solution. To show that ϕ is well-defined, I have to show that if $a G_{x}=b G_{x}$, then $\phi\left(a G_{x}\right)=\phi\left(b G_{x}\right)$; i.e., I have to show that $a x=b x$. Well, $a G_{x}=b G_{x}$ if and only if $b^{-1} a \in G_{x}$, in which case $\left(b^{-1} a\right) x=x$. "Multiply" both sides by $b: a x=b x$, as desired.

Running this argument backwards shows that if $\phi\left(a G_{x}\right)=\phi\left(b G_{x}\right)$, then $a G_{x}=b G_{x}$: ϕ is one-to-one.

Finally, I have to show that ϕ is onto. Given $y \in O_{x}$, then $y=g x$ for some $g \in G$; thus $y=\phi\left(g G_{x}\right)$.

3(b). Let p be a prime number. Recall that a p-group is a group which has order p^{n} for some n. Prove that the center of a p-group has order larger than 1 .

SOLUTION. Let G be a p-group, and consider the class equation for G :

$$
p^{n}=1+(\text { other terms }) .
$$

Each of the other terms must divide the order of G, and so must be p^{i} for some $i \leq n . p$ divides the left-hand side and p divides each term p^{i} where $i \geq 1$, but p doesn't divide 1 , so there must be more than one 1 on the right side of the equation: the class equation must look like

$$
p^{n}=\underbrace{1+1+\cdots+1}_{j}+(\text { other terms })
$$

where here the other terms are of the form p^{i} with $1 \leq i \leq n$. The number j must be larger than 1. (In fact, it must be a multiple of p, but I don't really care about that right now.) Now, remember that the terms in the class equation are the sizes of conjugacy classes. If the conjugacy class of an element x has exactly one element in it, that element must be x (since every element is always conjugate to itself: $x=1 x 1^{-1}$). Thus $g x g^{-1}=x$ for every $g \in G$; equivalently, $g x=x g$; equivalently, x is in the center of G. Thus the center of G has j elements, where $j \geq 2$.
4. Let V be a finite-dimensional real vector space and let \langle,$\rangle be a symmetric$ positive definite bilinear form on V. For any subspace W of V, let W^{\perp} be the orthogonal complement of W :

$$
W^{\perp}=\{u:\langle u, w\rangle=0 \text { for all } w \in W\} .
$$

Show that $V=W \oplus W^{\perp}$; in other words, show:
(a) $W \cap W^{\perp}=0$.

Solution. Assume that $w \in W \cap W^{\perp}$. Since $w \in W^{\perp}$, then w is orthogonal to everything in W; in particular, $\langle w, w\rangle=0$. Since the form is positive definite, though, $\langle w, w\rangle$ is positive for any nonzero vector w; thus w must be zero. So the only vector in both W and W^{\perp} is the zero vector.
(b) Every vector $v \in V$ can be written in the form $v=w+u$ where $w \in W$ and $u \in W^{\perp}$. [Hint: choose an orthonormal basis for W.]

Solution. Let w_{1}, \ldots, w_{r} be an orthonormal basis for W. (I mean orthonormal with respect to the form \langle,$\rangle . I know that there is an orthonormal basis since the form$ is positive definite-use the Gram-Schmidt procedure, for instance.) I want to write

$$
v=c_{1} w_{1}+\cdots+c_{r} w_{r}+u
$$

where $u \in W^{\perp}$. In other words, I want to choose the scalars c_{i} so that

$$
v-c_{1} w_{1}-\cdots-c_{r} w_{r} \in W^{\perp} .
$$

If I want to check that a vector is in W^{\perp}, it suffices to check that it's orthogonal to each w_{i}, so I compute this:

$$
\left\langle w_{i}, v-c_{1} w_{1}-\cdots-c_{r} w_{r}\right\rangle=\left\langle w_{i}, v\right\rangle-c_{i}\left\langle w_{i}, w_{i}\right\rangle=\left\langle w_{i}, v\right\rangle-c_{i} .
$$

(I'm using the fact that the w_{i} 's are orthonormal.) So if I want this to be zero, I set $c_{i}=\left\langle w_{i}, v\right\rangle$.

In other words, for any $v \in V$,

$$
u=v-\sum_{i=1}^{r}\left\langle w_{i}, v\right\rangle w_{i} \in W^{\perp}
$$

so v can be written as the sum of something in W (the sum above) with something in W^{\perp} (the vector u).
5. Let A be a real symmetric $n \times n$ matrix. We know that there is an invertible matrix Q so that $Q A Q^{t}$ is diagonal, such that each diagonal entry is either $1,-1$, or 0 . Recall that in this situation, the signature of A is the pair of numbers (p, m), where p is the number of 1 's on the diagonal of $Q A Q^{t}$, and m is the number of -1 's. Show that p is equal to the number of positive eigenvalues of A and m is equal to the number of negative eigenvalues. [Hint: use the spectral theorem.]

Solution. By the spectral theorem, there is an orthogonal matrix P so that $P A P^{t}=$ $P A P^{-1}$ is diagonal, with the eigenvalues as the diagonal entries. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues. Define a matrix C as follows: C is diagonal, and the (i, i)-entry is

$$
\begin{array}{cl}
1 / \sqrt{\left|\lambda_{i}\right|} & \text { if } \lambda_{i} \neq 0 \\
1 & \text { if } \lambda_{i}=0
\end{array}
$$

Then C is invertible and $C^{t}=C$. Now look at $(C P) A(C P)^{t}=C\left(P A P^{t}\right) C^{t}$: since $P A P^{t}$ is diagonal with i th diagonal entry λ_{i}, then $C\left(P A P^{t}\right) C^{t}$ is diagonal with i th diagonal entry

$$
\begin{array}{cl}
1 & \text { if } \lambda_{i}>0, \\
-1 & \text { if } \lambda_{i}<0, \\
0 & \text { if } \lambda_{i}=0
\end{array}
$$

$C P$ is invertible, so let $Q=C P$: then $Q A Q^{t}$ is of the right form, and it has signature (p, m), where p is the number of positive eigenvalues of A and m is the number of negative eigenvalues.
6. Let $U(n)$ be the set of complex $n \times n$ unitary matrices. Show that the product of two unitary matrices is unitary, and the inverse of a unitary matrix is unitary; in other words, show that $U(n)$ is a subgroup of $G L_{n}(\mathbf{C})$.

Solution. Recall that a matrix A is unitary if and only if $A A^{*}=I$. If A and B are unitary, then $(A B)(A B)^{*}=A B B^{*} A^{*}=A\left(B B^{*}\right) A^{*}=A(I) A^{*}=I$, so $A B$ is unitary. If A is unitary, then A is invertible with $A^{-1}=A^{*}$; I need to check that A^{*} is unitary: $A^{*}\left(A^{*}\right)^{*}=A^{*} A$. We know from last quarter that if C and D are square matrices with $C D=I$, then $D C=I$; thus $A^{*} A=I$, as desired.
7. Let A be a real symmetric matrix, and define a bilinear form \langle,$\rangle on \mathbf{R}^{n}$ by $\langle X, Y\rangle=X^{t} A Y$. Of course, there is also the ordinary dot product $(X \cdot Y)=X^{t} Y$.

True or false: If A is a real symmetric matrix, then the eigenvectors for A are orthogonal with respect to both the ordinary dot product (\cdot) and the bilinear form \langle,$\rangle .$ Give a proof or a counterexample.

Solution. This is true. The spectral theorem says that the eigenvectors are orthogonal with respect to the ordinary dot product. Now assume that X and Y are eigenvectors, with $A Y=\lambda Y$. Then

$$
\langle X, Y\rangle=X^{t} A Y=X^{t}(\lambda Y)=\lambda\left(X^{t} Y\right)=\lambda(X \cdot Y) .
$$

Since X and Y are orthogonal with respect to the ordinary dot product, this is zero; hence they're orthogonal with respect to the form defined by A, too.
8. Describe the Gram-Schmidt procedure.

Solution. This is a procedure for constructing orthonormal bases, given a symmetric positive definite bilinear form on a finite-dimensional real vector space V. More precisely, you start with any basis for V, and the Gram-Schmidt procedure tells you how to alter it, inductively, to get an orthonormal basis.

Even more precisely, suppose V is a vector space with bilinear form \langle,$\rangle , satisfying$ the conditions above. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis for V. To construct an orthonormal basis $\left(w_{1}, \ldots, w_{n}\right)$, first normalize v_{1} : let

$$
w_{1}=\frac{1}{\sqrt{\left\langle v_{1}, v_{1}\right\rangle}} v_{1} .
$$

Then w_{1} is a unit vector.
Suppose now that we've constructed mutually orthogonal unit vectors w_{1}, \ldots, w_{k-1} out of the v_{i} 's. Define a vector w as follows:

$$
w=v_{k}-\sum_{i=1}^{k-1}\left\langle v_{k}, w_{i}\right\rangle w_{i} .
$$

Then w is orthogonal to each w_{i}, so normalize it to get w_{k} :

$$
w_{k}=\frac{1}{\sqrt{\langle w, w\rangle}} w .
$$

