Exam 1 solutions

1. Write $\frac{1+i}{2-3 i}$ in rectangular coordinates.

Okay:

$$
\frac{1+i}{2-3 i}=\frac{1+i}{2-3 i} \frac{2+3 i}{2+3 i}=\frac{(1+i)(2+3 i)}{2^{2}+3^{2}}=\frac{-1+5 i}{13}=\frac{-1}{13}+i \frac{5}{13}
$$

2. Plot the point $-3+3 i$, and express it in polar coordinates.

Here's the plot:

By the Pythagorean Theorem, the "length" is $\sqrt{3^{2}+3^{2}}=\sqrt{18}=3 \sqrt{2}$. The angle is $\theta=3 \pi / 4$. Thus the answer is $-3+3 i=3 \sqrt{2} e^{3 \pi i / 4}$.
3. Find all complex numbers z that satisfy the equation $z^{4}=-1$.

Let $z=r e^{i \theta}$, so that $z^{4}=r^{4} e^{i 4 \theta}$. In polar coordinates, the equation $z^{4}=-1$ becomes $r^{4} e^{i 4 \theta}=e^{i \pi}$. When two complex numbers are equal, their lengths are equal, so in this case, $r^{4}=1$. r must be real and positive, so $r=1$. Also, their angles must be equal, or at least must differ by an integer multiple of 2π, so in this case, $4 \theta-\pi$ is a multiple of 2π : $4 \theta-\pi=\cdots,-4 \pi,-2 \pi, 0,2 \pi, 4 \pi, \ldots$. Solve for θ : $\theta=\cdots,-3 \pi / 4,-\pi / 4, \pi / 4,3 \pi / 4,5 \pi / 4, \cdots$. All but four of these are redundant; those four give us the four solutions: $z=e^{i \pi / 4}, e^{i 3 \pi / 4}, e^{i 5 \pi / 4}, e^{i 7 \pi / 4}$.
4. Find the general solution to the differential equation $y^{\prime \prime}-2 y^{\prime}+5 y=0$.

The characteristic equation is $r^{2}-2 r+5=0$, which has roots $r=1 \pm 2 i$. So one way to write the general solution is $y=a_{1} e^{(1+2 i) t}+a_{2} e^{(1-2 i) t}$. A better way to write it is $y=c_{1} e^{t} \cos 2 t+c_{2} e^{t} \sin 2 t$.
5. Consider this initial value problem: $y^{\prime \prime}-6 y^{\prime}=0, y(0)=-2, y^{\prime}(0)=-18$.
(a) Solve the initial value problem.

The characteristic equation is $r^{2}-6 r=0$, which factors as $(r-6) r=0$. This has roots $r=6$ and $r=0$, so the general solution is $y=c_{1} e^{6 t}+c_{2} e^{0 t}=c_{1} e^{6 t}+c_{2}$. So $y^{\prime}=6 c_{1} e^{6 t}$. The initial conditions give the equations

$$
\begin{aligned}
-2 & =c_{1}+c_{2}, \\
-18 & =6 c_{1},
\end{aligned}
$$

so $c_{1}=-3$ and $c_{2}=1$. So the solution is $y=-3 e^{6 t}+1$.
(b) Verify that your answer is correct.

Given the formula for y, then $y^{\prime}=-18 e^{6 t}$ and $y^{\prime \prime}=-(18 \cdot 6) e^{6 t}$. So $y^{\prime \prime}-6 y^{\prime}=$ $-(18 \cdot 6) e^{6 t}-6\left(-18 e^{6 t}\right)$ is in fact zero, so y is a solution. Also, $y(0)=-3+1=-2$, and $y^{\prime}(0)=-18$. So it is the right answer.
6. Here is a differential equation: $\frac{d y}{d t}=(y+1)(y-2)(y-3)$. Do not solve it. Instead, analyze it like some of the population problems in the homework. (In most of those problems, y was assumed to be positive. In this problem, there is no such restriction: y may be positive, negative or zero.)
(a) Draw a rough sketch of the graph of $d y / d t$ versus y.

(b) Determine the critical points, and classify each one as either stable or unstable.

The critical points are the points where $d y / d t=0$. These are $y=-1, y=2$, and $y=3$. Since $d y / d t$ is negative when $y<-1$, and since it is positive when $-1<y<2$, then $y=-1$ is an unstable critical point. Since $d y / d t$ is negative when $2<y<3, y=2$ is stable, and similarly, $y=3$ is unstable.
(c) Sketch the integral curves - that is, the solutiong of the differential equation (on a graph of y versus t).
7. Solve the initial value problem $y^{\prime}=2 y^{2}+x y^{2}, y(0)=1$.

This is a separable equation. Rewrite it as $y^{\prime}=y^{2}(2+x)$, or

$$
\frac{d y}{y^{2}}=(2+x) d x
$$

Integrate both sides: $-1 / y=x^{2} / 2+2 x+c$. Solve for y :

$$
y=\frac{-1}{x^{2} / 2+2 x+c}
$$

The initial condition tells me that $1=-1 / c$, so $c=-1$, and the solution is

$$
y=\frac{-1}{x^{2} / 2+2 x-1} .
$$

8. Solve the initial value problem $y^{\prime}+y=5 \sin 2 t, y(0)=0$.

This is a first order linear equation. Since the coefficient of y is 1 , the integrating factor is $e^{\int 1 d t}=e^{t}$. Multiply by this: $e^{t} y^{\prime}+e^{t} y=5 e^{t} \sin 2 t$. Integrate both sides: the left side is the integrating factor times y, and the right side was given in the formulas on the last page. You should get

$$
e^{t} y=5\left(\frac{e^{t}}{5}(\sin 2 t-2 \cos 2 t)+c\right.
$$

so

$$
y=\sin 2 t-2 \cos 2 t+c e^{-t}
$$

The initial condition says that $0=-2+c$, so $c=2$, and the solution is

$$
y=\sin 2 t-2 \cos 2 t+2 e^{-t}
$$

9. Consider the differential equation $y^{\prime \prime}+2 y^{\prime}+y=0$. In this case, the characteristic equation is $r^{2}+2 r+1=0$, which has only one root, $r=-1$. As a result, $y_{1}(t)=e^{-t}$ is a solution. (You don't have to check that.)
(a) Verify that $y_{2}(t)=t e^{-t}$ is also a solution.
$y_{2}^{\prime}=e^{-t}-t e^{-t}$ (by the product rule), and $y_{2}^{\prime \prime}=-2 e^{-t}+t e^{-t}$, so $y_{2}^{\prime \prime}+2 y_{2}^{\prime}+y_{2}=$ $\left(-2 e^{-t}+t e^{-t}\right)+2\left(e^{-t}-t e^{-t}\right)+\left(t e^{-t}\right)$, and everything cancels, so you get zero. So it's a solution.
(b) Use the Wronskian to determine whether the solutions $y_{1}(t)=e^{-t}$ and $y_{2}(t)=t e^{-t}$ are linearly independent.
The formula for the Wronskian is $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$, which in this case is

$$
W=\left(e^{-t}\right)\left(e^{-t}-t e^{-t}\right)-\left(-e^{-t}\right)\left(t e^{-t}\right)=e^{-2 t}
$$

This is not zero, so the two solutions are linearly independent.
10. (Bonus) Use Euler's formula to show that $\cos (3 \theta)=4 \cos ^{3} \theta-3 \cos \theta$.

Solution. By Euler's formula, $\cos \alpha=\operatorname{Re}\left(e^{i \alpha}\right)$ for any number α. Let $\alpha=3 \theta$; then

$$
\cos 3 \theta=\operatorname{Re}\left(e^{i 3 \theta}\right)
$$

So I'll compute $e^{i 3 \theta}$ and then find its real part.

$$
\begin{array}{rlrl}
e^{i 3 \theta} & =\left(e^{i \theta}\right)^{3} & \quad \text { by laws of exponents } \\
& =(\cos \theta+i \sin \theta)^{3} & \text { by Euler's formula } \\
& =(\cos \theta)^{3}+3(\cos \theta)^{2}(i \sin \theta)+3(\cos \theta)(i \sin \theta)^{2}+(i \sin \theta)^{3}
\end{array}
$$

by multiplying it out, or by the binomial theorem

$$
=\cos ^{3} \theta+3 i \cos ^{2} \theta \sin \theta+3 i^{2} \cos \theta \sin ^{2} \theta+i^{3} \sin ^{3} \theta
$$

Now, $i^{2}=-1$, so $i^{3}=-i$; when I plug these in, I get

$$
e^{i 3 \theta}=\cos ^{3} \theta+3 i \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-i \sin ^{3} \theta .
$$

The real part of this (which is what we're looking for) is

$$
\cos 3 \theta=\operatorname{Re}\left(e^{3 i \theta}\right)=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta
$$

Finally, $\sin ^{2} \theta=1-\cos ^{2} \theta$, and when I plug this in and do the algebra, I get the advertised formula:

$$
\begin{aligned}
\cos 3 \theta & =\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =\cos ^{3} \theta-3 \cos \theta+3 \cos ^{3} \theta \\
& =4 \cos ^{3} \theta-3 \cos \theta
\end{aligned}
$$

By the way, the problem didn't ask for this, but now I can also find $\sin 3 \theta$, since it is the imaginary part of $e^{3 i \theta}$:

$$
\begin{aligned}
\sin 3 \theta & =3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta \\
& =3\left(1-\sin ^{2} \theta\right) \sin \theta-\sin ^{3} \theta \\
& =3 \sin \theta-3 \sin ^{3} \theta-\sin ^{3} \theta \\
& =3 \sin \theta-4 \sin ^{3} \theta
\end{aligned}
$$

