
Exam 1 solutions
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1 + i

2− 3i
in rectangular coordinates.

Okay:
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2. Plot the point −3 + 3i, and express it in polar coordinates.

Here’s the plot:

−3 + 3i

θ

By the Pythagorean Theorem, the “length” is
√

32 + 32 =
√

18 = 3
√

2. The angle is

θ = 3π/4. Thus the answer is −3 + 3i = 3
√

2e3πi/4 .

3. Find all complex numbers z that satisfy the equation z4 = −1.

Let z = reiθ, so that z4 = r4ei4θ. In polar coordinates, the equation z4 = −1 be-
comes r4ei4θ = eiπ. When two complex numbers are equal, their lengths are equal,
so in this case, r4 = 1. r must be real and positive, so r = 1. Also, their an-
gles must be equal, or at least must differ by an integer multiple of 2π, so in this
case, 4θ − π is a multiple of 2π: 4θ − π = · · · ,−4π,−2π, 0, 2π, 4π, . . . . Solve for θ:
θ = · · · ,−3π/4,−π/4, π/4, 3π/4, 5π/4, · · · . All but four of these are redundant; those

four give us the four solutions: z = eiπ/4, ei3π/4, ei5π/4, ei7π/4 .

4. Find the general solution to the differential equation y ′′ − 2y′ + 5y = 0.

The characteristic equation is r2 − 2r + 5 = 0, which has roots r = 1± 2i. So one way
to write the general solution is y = a1e

(1+2i)t + a2e
(1−2i)t. A better way to write it is

y = c1e
t cos 2t + c2e

t sin 2t .

5. Consider this initial value problem: y′′ − 6y′ = 0, y(0) = −2, y′(0) = −18.

(a) Solve the initial value problem.

The characteristic equation is r2 − 6r = 0, which factors as (r − 6)r = 0. This has
roots r = 6 and r = 0, so the general solution is y = c1e

6t + c2e
0t = c1e

6t + c2. So
y′ = 6c1e

6t. The initial conditions give the equations

−2 = c1 + c2,

−18 = 6c1,

so c1 = −3 and c2 = 1. So the solution is y = −3e6t + 1 .



(b) Verify that your answer is correct.

Given the formula for y, then y′ = −18e6t and y′′ = −(18 · 6)e6t. So y′′ − 6y′ =
−(18 ·6)e6t−6(−18e6t) is in fact zero, so y is a solution. Also, y(0) = −3+1 = −2,
and y′(0) = −18. So it is the right answer.

6. Here is a differential equation:
dy

dt
= (y + 1)(y − 2)(y − 3). Do not solve it. Instead,

analyze it like some of the population problems in the homework. (In most of those
problems, y was assumed to be positive. In this problem, there is no such restriction: y
may be positive, negative or zero.)

(a) Draw a rough sketch of the graph of dy/dt versus y.

y

y′

(b) Determine the critical points, and classify each one as either stable or unstable.

The critical points are the points where dy/dt = 0. These are y = −1 , y = 2 ,

and y = 3 . Since dy/dt is negative when y < −1, and since it is positive when

−1 < y < 2, then y = −1 is an unstable critical point. Since dy/dt is negative when
2 < y < 3, y = 2 is stable, and similarly, y = 3 is unstable.

(c) Sketch the integral curves—that is, the solutions of the differential equation (on a
graph of y versus t).

t

y
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7. Solve the initial value problem y′ = 2y2 + xy2, y(0) = 1.

This is a separable equation. Rewrite it as y′ = y2(2 + x), or

dy

y2
= (2 + x)dx.

Integrate both sides: −1/y = x2/2 + 2x + c. Solve for y:

y =
−1

x2/2 + 2x + c
.

The initial condition tells me that 1 = −1/c, so c = −1, and the solution is

y =
−1

x2/2 + 2x− 1
.

8. Solve the initial value problem y′ + y = 5 sin 2t, y(0) = 0.

This is a first order linear equation. Since the coefficient of y is 1, the integrating factor
is e

�
1dt = et. Multiply by this: ety′ + ety = 5et sin 2t. Integrate both sides: the left side

is the integrating factor times y, and the right side was given in the formulas on the last
page. You should get

ety = 5(
et

5
(sin 2t− 2 cos 2t) + c,

so
y = sin 2t− 2 cos 2t + ce−t.

The initial condition says that 0 = −2 + c, so c = 2, and the solution is

y = sin 2t− 2 cos 2t + 2e−t .

9. Consider the differential equation y′′ + 2y′ + y = 0. In this case, the characteristic
equation is r2 + 2r + 1 = 0, which has only one root, r = −1. As a result, y1(t) = e−t is
a solution. (You don’t have to check that.)

(a) Verify that y2(t) = te−t is also a solution.

y′2 = e−t − te−t (by the product rule), and y′′2 = −2e−t + te−t, so y′′2 + 2y′2 + y2 =
(−2e−t + te−t) + 2(e−t − te−t) + (te−t), and everything cancels, so you get zero. So
it’s a solution.

(b) Use the Wronskian to determine whether the solutions y1(t) = e−t and y2(t) = te−t

are linearly independent.

The formula for the Wronskian is W = y1y
′

2 − y′1y2, which in this case is

W = (e−t)(e−t − te−t)− (−e−t)(te−t) = e−2t.

This is not zero, so the two solutions are linearly independent .
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10. (Bonus) Use Euler’s formula to show that cos(3θ) = 4 cos3 θ − 3 cos θ.

Solution. By Euler’s formula, cos α = Re(eiα) for any number α. Let α = 3θ; then

cos 3θ = Re(ei3θ).

So I’ll compute ei3θ and then find its real part.

ei3θ = (eiθ)3 by laws of exponents

= (cos θ + i sin θ)3 by Euler’s formula

= (cos θ)3 + 3(cos θ)2(i sin θ) + 3(cos θ)(i sin θ)2 + (i sin θ)3

by multiplying it out, or by the binomial theorem

= cos3 θ + 3i cos2 θ sin θ + 3i2 cos θ sin2 θ + i3 sin3 θ.

Now, i2 = −1, so i3 = −i; when I plug these in, I get

ei3θ = cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ.

The real part of this (which is what we’re looking for) is

cos 3θ = Re(e3iθ) = cos3 θ − 3 cos θ sin2 θ.

Finally, sin2 θ = 1−cos2 θ, and when I plug this in and do the algebra, I get the advertised
formula:

cos 3θ = cos3 θ − 3 cos θ(1− cos2 θ)

= cos3 θ − 3 cos θ + 3 cos3 θ

= 4 cos3 θ − 3 cos θ.

By the way, the problem didn’t ask for this, but now I can also find sin 3θ, since it is the
imaginary part of e3iθ:

sin 3θ = 3 cos2 θ sin θ − sin3 θ

= 3(1− sin2 θ) sin θ − sin3 θ

= 3 sin θ − 3 sin3 θ − sin3 θ

= 3 sin θ − 4 sin3 θ.
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