
Summary: first order differential equations

Types discussed in class.

1. Separable equations. These are equations which may be written in the
form

y′ = f(y)g(t).

To solve, you separate the variables:

1
f(y)

dy = g(t)dt.

Then integrate, making sure to include one of the constants of integration:∫
1

f(y)
dy =

∫
g(t)dt+ c.

2. Linear equations. These are equations of this form:

y′ + p(t)y = q(t).

To solve, make sure it’s in exactly this form, and multiply by the “inte-
grating factor” e

∫
p(t)dt:

e
∫
p(t)dty′ + e

∫
p(t)dtp(t)y = e

∫
p(t)dtq(t).

Let I(t) denote the integrating factor: I(t) = e
∫
p(t)dt. Then the left side

of the equation is the derivative of I(t)y:

(I(t)y)′ = I(t)q(t).

Now integrate:

I(t)y =
∫
I(t)q(t)dt+ c,

so
y =

1
I(t)

∫
I(t)q(t)dt+

c

I(t)
.

(I find it much easier to remember the procedure—multiply by e
∫
p(t)dt—

than to try to memorize this solution.)
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Types not discussed in class. You won’t need to know these for any home-
work or exams for this class, but they might come up in other courses.

1. Homogeneous equations. (See Section 2.9.) (Warning: the word “ho-
mogeneous” gets used in several different ways when studying differential
equations.) A homogeneous equation is one of this form:

y′ = f(x, y),

where the function f(x, y) depends only on the ratio y/x—say f(x, y) =
(y/x)2 + sin(3 y/x). In other words, it is an equation of the form

y′ = F (y/x)

for some function F . Let v = y/x, so that y = vx. Then y′ = v′x+ v, and
if you plug this in for y′ and plug v in for y/x, you get

xv′ + v = F (v).

This is separable:
dv

F (v)− v
=
dx

x
.

So solve it for v, and then substitute back in for y: v = y/x.

2. Bernoulli equations. (See problems 37–41 in Section 2.2.) These are a lot
like linear equations; they are equations of this form:

y′ + p(t)y = q(t)yn,

where n is any number except 0 or 1. (If n = 0, then y0 = 1, so this is
just a linear equation. If n = 1, then y1 = y, so you can rewrite this as
y′ + [p(t)− q(t)]y = 0, which is a linear equation.)

To solve it, make the substitution v = y1−n, so that v′ = (1− n)y−ny′; in
other words, y−ny′ = 1

1−nv
′. Multiply the original equation by y−n:

y−ny′ + p(t)y1−n = q(t).

Now make the substitution with v:

1
1− n

v′ + p(t)v = q(t).

Multiply everything by 1 − n and you have a linear equation, which you
can solve to find v. Once you have v, then use the equation y = v1/(1−n)

to find y.
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Another type not discussed in class. This may not make sense unless you
know what partial derivatives are.

1. Exact equations. I’ll start with what I want the solution to look like, and
then come up with the form for the differential equation. If you have an
equation like this:

ψ(x, y) = c,

then taking the derivative with respect to x gives

∂ψ

∂x
+
∂ψ

∂y

dy

dx
= 0, where

∂

∂y

(
∂ψ

∂x

)
=

∂

∂x

(
∂ψ

∂y

)
.

So an exact equation is one that look like this:

M(x, y) +N(x, y)y′ = 0,

where
∂

∂y
M(x, y) =

∂

∂x
N(x, y).

To solve it, you want to use M and N to find ψ. So first you integrate
M(x, y) with respect to x, treating y as a constant: let

ψ(x, y) =
∫
M(x, y)dx+ h(y)

for some function of y. (This h(y) is the constant of integration, but since
we were pretending that y was constant, it may depend on y.) It turns
out that h(y) must satisfy this equation:

h′(y) = N(x, y)−
∫

∂

∂y
M(x, y)dx.

This may look complicated, but the right hand side always ends up de-
pending only on y, so you just have to integrate it to get h(y). Then
ψ(x, y) = c is an implicit solution of the original differential equation.

2. Integrating factors, more generally. Finally, suppose the equation looks
like this

M(x, y) +N(x, y)y′ = 0,

but where the condition on partial derivatives is not satisfied:

∂

∂y
M(x, y) 6= ∂

∂x
N(x, y).

Sometimes it is possible to find a function µ(x, y), which is another sort
of integrating factor, so that when you multiply by it:

µ(x, y)M(x, y) + µ(x, y)N(x, y)y′ = 0,

the resulting equation is exact. There is no general procedure for finding
µ(x, y), but there are methods that work some of the time. For example,
let My be shorthand for ∂

∂yM , and similarly for Nx = ∂
∂xN . If

My −Nx
N

is a function only of x (no y involved), then you can find µ by solving this
linear differential equation:

dµ

dx
=
My −Nx

N
µ.
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