
Math 126: Calc III

An Overview of Vector Algebra (Through Lecture 6)

Notation: We can write vectors in a few different ways.

In n dimensions, we can write its components as an ordered n-tuple inside angled
brackets. In other words, the vector from the origin to (a1, a2, . . . , an) can be written
as 〈a1, a2, . . . , an〉.
In two dimensions, we use i = 〈1, 0〉 and j = 〈0, 1〉 to represent the standard unit
vectors. Similarly, in three dimensions we have:

i = 〈1, 0, 0〉 j = 〈0, 1, 0〉 k = 〈0, 0, 1〉.

That gives us a second way to write vectors in two or three dimensions, as sums of
standard unit vectors: 〈a1, a2, a3〉 = a1i + a2j + a3k. For instance, 〈2, 0,−7〉 = 2i− 7k.

In general, we use bold letters to represent vectors in typed documents. When writing
by hand, use an overarrow: ~a,~b,~c instead of a,b, c.

Sums: To add two vectors, simply add their corresponding components: if a = 〈a1, a2, . . . , an〉
and b = 〈b1, b2, . . . , bn〉, then a + b = 〈a1 + b1, a2 + b2, . . . , an + bn〉.
Geometrically, a + b can be found by drawing a and b tip-to-tail in the plane:

a

b
a + b

Differences: Likewise, we can subtract one vector from another by taking the differences of
their corresponding components: if a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bn〉, then
a− b = 〈a1 − b1, a2 − b2, . . . , an − bn〉.
A common geometric interpretation is given by drawing a and b with their tails at the
same point, so that a− b is the vector from the tip of b to the tip of a:
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Magnitude: The magnitude of a vector is its length. The magnitude of an n-dimensional
vector a = 〈a1, a2, . . . , an〉 is written as |a| or ||a|| and is given by the formula:

|a| =
√
a21 + a22 + · · ·+ a2n

Scalar multiplication: A scalar, in contrast with a vector, is any real number. We can
multiply a vector a = 〈a1, . . . , an〉 by a scalar c to get ca = 〈ca1, . . . , can〉.
Geometrically, this has the effect of stretching a by a factor of c. If c is negative, then
ca points in the opposite direction of a. In either case, we say that a and ca are parallel
vectors.



Dot product: Given two vectors a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bn〉, we can com-
pute the dot product a ·b = a1b1 + a2b2 + · · ·+ anbn. Notice that the result is a scalar,
not a vector.

If the angle between a and b (when drawn tail-to-tail) is θ, then a · b = |a| |b| cos(θ).
In particular, this means that two vectors are perpendicular if and only if their dot
product is zero.

Projection: The vector projection of b onto a, written projab, is the vector formed by
drawing a and b tail-to-tail, dropping a perpendicular from the tip of b to a, and
drawing a vector along a to where it meets that perpendicular.

What? Okay, maybe a picture will help:
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projab

Its length is called the component of b along a, written compab. (Why? Because
if you rotated your coordinate system so that a sat along an axis, this would be the
component of b in that dimension.)

The dot product allows us to compute both of these values:

compab =
a · b
|a|

projab =

(
a · b
|a|2

)
a

Note that compab is a scalar, while projab is a vector.

Cross product: The cross product is only defined for vectors in three dimensions. If a =
〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, then the cross product is:

a× b = 〈a2b3 − a3b2 , a3b1 − a1b3 , a1b2 − a2b1〉

Note that, in contrast to the dot product, the cross product a × b is a vector. This
vector is always perpendicular to both a and b. Its direction can be found using the
right-hand rule, and its magnitude is given by the formula |a × b| = |a| · |b| sin(θ),
where θ is the angle between a and b. This is equal to the area of the parallelogram
spanned by a and b:
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Area = |a× b|

If a and b are parallel, then a× b is the zero vector 0 = 〈0, 0, 0〉.

Lines: Now that we know about vectors, we can accurately describe lines in three dimen-
sions. Suppose a line passes through the point (x0, y0, z0), and travels in the direction
of the vector 〈a, b, c〉. Then the parametric equations for the line are:

x = x0 + at y = y0 + bt z = z0 + ct



We can also describe the same line with symmetric equations:

x− x0
a

=
y − y0
b

=
z − z0
c

Planes: Suppose a plane passes through the point (x0, y0, z0), and is perpendicular to 〈a, b, c〉
(called a normal vector). The equation for the plane can be written as:

ax+ by + cz = ax0 + by0 + cz0

In the wild, you’re likely to see the right side simplified, since it’s just a constant:

ax+ by + cz = d

Oh, and the coordinate planes are the xy-plane (z = 0), the xz-plane (y = 0), and the
yz-plane (x = 0).

Some things you can do with all that:

• Find the components of a vector from one point to another. Man, that’s easy:
just subtract the first point’s coordinates from the second point’s coordinates. The
line from (a1, a2, a3) to (b1, b2, b3) is 〈b1 − a1, b2 − a2, b3 − a3〉.

• Check whether two vectors are parallel. Is one a scalar multiple of the other?
Try dividing each component of one vector by the corresponding component of the
other vector. Do you get the same scaling factor each time?

• Check whether two vectors are orthogonal. Take their dot product! Is it zero?

• Find the angle θ between two vectors. Take their dot product, and use the fact
that a · b = |a| · |b| cos(θ).

• Find out whether two lines are parallel, intersecting, or skew. First, check
whether or not they’re parallel by seeing if their directional vectors are parallel.

To see if they’re intersecting, try solving the system of equations formed by setting their
parametric equations equal. But wait! Make sure to use one parameter (t, probably)
for one line, and another parameter (like s) for the other line. If you get a solution,
then they’re intersecting!

If they’re not parallel or intersecting, then they’re skew lines.

• Find a plane passing through three given points. Pick two vectors between
those points. The normal vector of the plane should be perpendicular to both of them,
so find their cross product. Now you have the normal vector and a point (actually,
three points) on the plane.

• Find a plane containing a given point and a given line. One method: find two
points on that line. Now you just need a plane through those three points.

• See where a line intersects a plane. If the line is outside the plane and orthogonal
to the plane’s normal vector, then they don’t intersect.

If they do intersect, find out where by plugging the parametric equations of the line
into the equation of the plane and solving for t. Plug that t back into the parametrics,
and you’ve got the point of intersection.



• Find the angle between two planes. Find the angle between their normal vectors!
But you probably want the acute angle, so if your answer is obtuse, find the supplement
of that angle.

• See where two planes intersect. First, check if they’re parallel. (Are their normal
vectors parallel?)

They’re not? Then they intersect in a line, and that line is perpendicular to the
normal vectors of both planes. Take the cross product to find its direction. Use
algebra (perhaps by setting some coordinate equal to your favorite number) to find a
point along that line. Now you’ve got a point and a direction, so you’re just about
done.

Alternatively, you could try to find parametric equations for the intersection alge-
braically. Try arbitrarily choosing a parametric equation for one variable, e.g. x = t.
Then use the two plane equations to solve for y and z in terms of t. (Be careful! If
the direction vector of the line has 0 as its x-component, then setting x = t will lead
to something impossible. If something weird seems to be happening with the algebra,
consider choosing a different starting parametric equation.)

• Find a line through a given point, parallel to two given planes. Hey, this
is just like the previous problem: that line should be perpendicular to both normal
vectors, so you can take their cross product to find its direction.

• Find the distance from a point (let’s call it P ) to a plane. Okay, let n be the
normal vector to the plane, and let b be a vector from some point (any point) on the
plane to P . The distance is compnb.


