1. [4 points per part] Here are some free points: $A=(5,0,-1), B=(2,6,1), C=(2,3,1)$. Use them to answer the following questions.
(a) Find the angle $\angle A B C$.

$$
\begin{aligned}
\overrightarrow{B A}=\langle 3--6,-2\rangle & |\overrightarrow{B A}|=\sqrt{9+36+4}=7 \\
\overrightarrow{B C}=\langle 0,-3,0\rangle & |\overrightarrow{B C}|=3 \\
\overrightarrow{B A} \cdot \overrightarrow{B C}=18 & \\
18=3 \cdot 7 \cdot \cos \theta & \\
\theta & =\cos ^{-1}\left(\frac{6}{7}\right)
\end{aligned}
$$

(b) Find the area of the triangle $A B C$.

$$
\begin{aligned}
& \overrightarrow{B A} \times \overrightarrow{B C}=\langle-6,0,-9\rangle \\
& |\overrightarrow{B A} \times \overrightarrow{B C}|=\sqrt{36+8}=3 \sqrt{13} \\
& \text { Area of } \Delta=\frac{3 \sqrt{13}}{2}
\end{aligned}
$$

(c) Find the equation of the plane through the points A, B, and C.

$$
\text { Normal vector: }\langle-6,0,-9\rangle
$$

$$
\text { (or if you prefer: }\langle 2,0,3\rangle \text {) }
$$

$$
\text { plane: } 2(x-5)+3(z+1)=0
$$

or

$$
2 x+3 z=7
$$

2. [1 point per part] Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in 3 -space. Indicate whether each of the following expressions is a vector, a scalar, or nonsense.
You do not need to show work on this problem.
(a) $|\mathbf{u}| \mathbf{v}-\mathbf{w}$

(b) $|\mathbf{u}| \mathbf{v}+|\mathbf{w}|$

Vector Scalar

Vector Scalar

Vector Scalar Nonsense
(e) $\operatorname{proj}_{\mathbf{u}}(\mathbf{v} \times \mathbf{w})$

Vector Scalar

3. [2 points per part]

You do not need to show work on this problem.
(a) Give an example of two vectors \mathbf{u} and \mathbf{v} such that $\mathbf{u} \times \mathbf{v}=\langle 0,0,8\rangle$.

(b) Give an example of two different vectors \mathbf{u} and \mathbf{v} such that $\operatorname{proj}_{\mathbf{j}} \mathbf{u}=\operatorname{proj}_{\mathbf{j}} \mathbf{v}$.

$$
\begin{gathered}
\text { Any } \vec{u} \& \vec{v} w \text { the same } E x: \mid \vec{u}=\langle 1,2,0\rangle \& \vec{v}=\langle 0,2,0\rangle \\
y \text {-component. }
\end{gathered}
$$

(c) Give an example of two vectors \mathbf{u} and \mathbf{v} such that prof $_{\mathbf{u}} \mathbf{v}=\mathbf{v}$.

Any parallel vectors, e.g. $\vec{u}=\langle 2,0,0\rangle \& \vec{v}=\langle 3,0,0\rangle$
4. Suppose the surface $3 x^{2}+2 y^{2}+a z^{2}=b$ contains the points $(2,1,3)$ and $(1,0,2)$.
(a) [6 points] What are a and b ?

$$
\frac{-\binom{12+2+9 a=b}{3+0+4 a=b}}{11+5 a=0}
$$

$$
a=-2.2
$$

$$
b=-5.8
$$

(b) [2 points] Give the name of this surface. $\quad-\frac{3 x^{2}}{5.8}-\frac{2 y^{2}}{5.8}+\frac{2.2 z^{2}}{5.8}=1$ Hyperboloid of 2 sheets
5. [6 points] Find all the points (in Cartesian coordinates) where the curve

$$
r=5 \cos (\theta)+4 \cos ^{2}(\theta)
$$

crosses the x-axis.

Yes, when $\theta=\frac{\pi}{2}$
$(0,0)$

6. [6 points per part] Consider the space curve of the vector function $\mathbf{r}(t)=\left\langle t^{3}, 2 t,-t^{2}\right\rangle$.
(a) Where does the space curve cross the surface $x=y z+24$?

$$
\begin{aligned}
& t^{3}=(2 t)\left(-t^{2}\right)+24 \\
& 3 t^{3}=24 \\
& t=2 \\
& \vec{r}(2)=\langle 8,4-4\rangle \\
& (8,4,-4)
\end{aligned}
$$

(b) Write parametric equations for the line tangent to the space curve at the point $(1,2,-1)$.

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\left\langle 3 t^{2}, 2-2 z\right\rangle \\
& \vec{r}^{\prime}(1)=\langle 3,2-2\rangle
\end{aligned}
$$

$$
\begin{aligned}
& x=1+3 t \\
& y=2+2 t \\
& z=-1-2 t
\end{aligned}
$$

7. [10 points] I am once again asking you to consider the vector function

$$
\mathbf{r}(t)=\left\langle t^{3}, 2 t,-t^{2}\right\rangle
$$

Suppose a particle moves according to this vector function. Find its tangential and normal components of acceleration at the point $(64,8,-16)$.

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\left\langle 3 t^{2}, 2,-2 t\right\rangle \quad \vec{r}^{\prime}(4)=\langle 48,2,-8\rangle \\
& \vec{r}^{\prime \prime}(t)=\langle 6 t, 0,-2\rangle \quad \vec{r}^{\prime \prime}(4)=\langle 24,0,-2\rangle \\
& \left|\vec{r}^{\prime}(4)\right|=\sqrt{48^{2}+2^{2}+8^{2}}=2 \sqrt{593} \\
& \vec{r}^{\prime}(4) \times \vec{r}^{\prime \prime}(4)=\langle-4,-96,-48\rangle \\
& \left|\vec{r}^{\prime}(4) \times r^{\prime \prime \prime}(4)\right|=4 \sqrt{721} \\
& a_{T}=\frac{\vec{r}^{\prime}(4) \cdot \vec{r}^{\prime \prime}(4)}{\left|\vec{r}^{\prime}(4)\right|}=\frac{1168}{2 \sqrt{593}} \\
& a_{N}=\frac{\left|\vec{r}^{\prime}(4) \times r^{\prime \prime \prime}(4)\right|}{\left|\vec{r}^{\prime}(4)\right|}=\frac{2 \sqrt{721}}{\sqrt{593}}
\end{aligned}
$$

