A List of Topics for the First Midterm

Here's a list of things you should be comfortable doing for the exam.

1. Three-Dimensional Coordinate Systems (Chapter 12.1)

(a) Plot points in three dimensions.
(b) Compute the distance between two points in \mathbf{R}^{3}.
(c) Recognize equations for cylinders and spheres.

2. Vectors (Chapter 12.2)

(a) Recognize vectors written in a variety of forms.
(b) Find a vector from one point to another.
(c) Add, subtract, and scale vectors, either geometrically or algebraically.
(d) Compute the length of a vector.
3. The Dot Product (Chapter 12.3)
(a) Compute the dot product between two vectors.
(b) Determine when two vectors are parallel or perpendicular.
(c) Find the angle between two vectors.
(d) Compute $\operatorname{proj}_{\mathbf{a}}(\mathbf{b})$ and $\operatorname{comp}_{\mathbf{a}}(\mathbf{b})$.

4. The Cross Product (Chapter 12.4)

(a) Compute the cross product of two vectors in \mathbf{R}^{3}.
(b) Understand the connection between the directions of \mathbf{a}, \mathbf{b}, and $\mathbf{a} \times \mathbf{b}$.
(c) Find the area of a triangle or parallelogram using the cross product.

5. Lines \& Planes (Chapter 12.5)

(a) Find the equation for a line given a point and a direction vector.
(b) Find the equation for a plane given a point and a normal vector.
(c) Solve all sorts of problems involving lines \& planes, including but not limited to:

- Check whether two lines are parallel, intersecting, or skew.
- Find the intersection of two planes.
- Find the intersection of a line and a plane.
- Find a plane through three points.
- Find a plane through a point and a line.
- Find the distance from a point to a plane.
- Find the angle between two planes.

6. Quadric Surfaces (Chapter 12.6)

(a) Complete the square to write the equation for a quadric surface in standard form.
(b) Recognize various quadric surfaces from their equations.
(c) Determine the shape of a quadric surface by drawing its traces.
(d) Find the intersection(s) of a line with a quadric surface.

7. Vector Functions and Space Curves (Chapter 13.1)

(a) Compute limits of vector functions.
(b) Check whether the space curves of two vector functions intersect, and if so where.
(c) Locate the intersection of a space curve and a quadric surface.
(d) Find a vector function to represent the intersection of two surfaces.
8. Derivatives and Integrals of Vector Function (Chapter 13.2)
(a) Take the derivative of a vector function.
(b) Find the tangent vector to a space curve at a given point.
(c) Compute antiderivatives of vector functions.
9. Polar Coordinates (Chapter 10.3)
(a) Convert points and equations between polar form and Cartesian form.
(b) (Roughly) sketch polar functions.
10. Arc Length and Curvature (Chapter 13.3)
(a) Compute arc length for vector functions in three or more dimensions.
(b) Find κ, \mathbf{T}, and \mathbf{N} for a given vector function.

11. Velocity \& Acceleration (Chapter 13.4)

(a) Compute velocity and acceleration vectors for an object using its position vector.
(b) Integrate to find the position vector using the acceleration vector.
(c) Apply the equation $\mathbf{F}=m \mathbf{a}$.
(d) Decompose an acceleration vector into its normal and tangential components.

