
Math 126 Daily Fake Exam Problems Winter 2020

The deal: every day I’ll post an exam-like problem at the start of class, along with the
answer to the problem from the previous class. Please attempt these problems!

DFEP #1: Wednesday, January 15th.

Suppose a = 〈−1, 8, 4〉. Find a vector b so that:

• The angle between a and b is 60◦,

• b is perpendicular to k, and

• |b| = 4.
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DFEP #1 Solution:

Let’s say that b = 〈x, y, z〉. We know that b · k = 0, so z = 0.

We also know that a · b = −x + 8y + 4z = −x + 8y. But on the other hand, a · b =
||a|| · ||b|| cos(60◦). Since ||a|| = 9 and ||b|| = 4, that means −x + 8y = 18, or
x = 8y − 18.

Finally, since ||b|| = 4, we know that x2 + y2 = 16, so (8y − 18)2 + y2 = 16, which
simplifies to 65y2 − 288y + 308 = 0.

Solving that tells us that y =
288±

√
2882 − 4 · 65 · 308

130
≈ 2.627 or 1.804.

And since x = 8y − 18, that means we have two possible answers:

b = 〈3.016, 2.627, 0〉 or b = 〈−3.570, 1.804, 0〉

DFEP #2: Friday, January 17th.

(a) Give the equation of a plane containing the line
x− 2

4
=

y

−2
=
z + 6

3
and the

point (6, 1, 5).

(b) Find the intersection of this plane with the line
x+ 1

−6
=
y − 5

2
= z − 7.
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DFEP #2 Solution:

(a) We want a plane through the line
x− 2

4
=

y

−2
=
z + 6

3
and the point (6, 1, 5).

Certainly this plane contains the line’s direction vector 〈4,−2, 3〉. It also contains
the points (2, 0,−6) and (6, 1, 5), which means it contains the vector 〈4, 1, 11〉.
So to find the normal vector, we can take the cross product 〈4,−2, 3〉 × 〈4, 1, 11〉
to get 〈−25,−32, 12〉. The plane with normal vector 〈−25,−32, 12〉 through the
point (6, 1, 5) has equation

−25x− 32y + 12z = −25(6)− 32(1) + 12(5)

or
−25x− 32y + 12z = −122

(b) Let’s write that line in parametric form: x = −1 − 6t, y = 5 + 2t, z = 7 + t.
Plugging that into the equation of the plane yields

−25(−1− 6t)− 32(5 + 2t) + 12(7 + t) = −122

which we can solve to get t = −71/98 ≈ −0.7245, so the point of intersection is
(x, y, z) = (3.347, 3.551, 6.276).

DFEP #3: Wednesday, January 22nd:

Find the equation of an ellipsoid centered at (0, 1,−2) that passes through the points
(8, 4,−2), (0,−4,−2), and (2, 2, 3).
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DFEP #3 Solution:

We want an ellipsoid centered at (0, 1,−2), so it should have the form

x2

a2
+

(y − 1)2

b2
+

(z + 2)2

c2
= 1.

Plugging in (0,−4,−2) we can see that b = 5, and then plugging in (8, 4,−2) gives
a = 10. Finally, plugging in (2, 2, 3) we get

22

102
+

12

52
+

52

c2
= 1

So
25

c2
=

23

25
, so c2 =

625

23
and we get the ellispoid

x2

100
+

(y − 1)2

25
+

23(z + 2)2

625
= 1.

DFEP #4: Friday, January 24th:

Consider the vector function r = 〈t+ 1, 2t, 3t+ 2t2〉.

(a) Does the curve defined by r intersect the following line? If so, where?

x− 15

2
= y − 10 = 8− z

(b) Suppose r intersects the surface 5x2 + Cy2 + 2z2 = 1 in the yz-plane.

Solve for the constant C.

(c) Describe the surface from part (b). Your answer should be a short phrase.
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DFEP #4 Solution:

(a) We want to find the intersection of the vector functions 〈t + 1, 2t, 3t + 2t2〉 and
〈15 + 2s, 10 + s, 8− s〉. So we set their components equal:

t+ 1 = 15 + 2s 2t = 10 + s 3t+ 2t2 = 8− s

Yikes, let’s ignore that second equation for now. Solving the first and third gives
a quadratic 4t2 + 7t − 30 = 0, which factors as (4t + 15)(t − 2) = 0. So we have
either t = 2, s = −6 or t = −15/4, s = −71/8. Plugging those into the second
equation, we have t = 2, s = −6 as the only solution.

So where’s the point? Plug t or s into the corresponding vector function to get
(3, 4, 14) as the intersection.

(b) Okay, r = 〈t+1, 2t, 3t+2t2〉 intersects the yz-plane when x = 0, so t = −1, which
is at the point (0, 1

2
,−1). Since this intersects the curve 5x2 + Cy2 + 2z2 = 1, we

have C
(
1
2

)2
+ 2 = 1, so C = −4.

(c) The curve 5x2− 4y2 + 2z2 = 1 is a hyperboloid of one sheet, centered around the
y-axis.

DFEP #5: Monday, January 27th.

Consider the curve defined by the vector function r = 〈t+ 6, t3, et
2−6t+8〉.

(a) Find all points where the curve intersects the plane z = 1.

(b) Find the (acute) angle between the curve and the normal vector to the plane at
each point from part (a).
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DFEP #5 Solution:

(a) The curve defined by 〈t+ 6, t3, et
2−6t+8〉 intersects z = 1 when its z-component is

1, which means that et
2−6t+8 = 1. Therefore t2 − 6t+ 8 = 0, so t = 2 or t = 4.

To find the points of intersection, we plug t = 2 and t = 4 back into the vector
function to get (8, 8, 1) and (10, 64, 1).

(b) We’ll need to know the tangent vectors for the points from part (a). The derivative
r′(t) = 〈1, 3t2, (2t− 6)et

2−6t+8〉.
At t = 2, this is the vector 〈1, 12,−2〉, and at t = 4 it’s 〈1, 48, 2〉.
To find the angle between the normal vector and the tangent vector:

〈1, 12,−2〉 · 〈0, 0, 1〉 = ||〈1, 12,−2〉|| · 1 cos(θ), so θ = cos−1(−2/
√

149) ≈ 99.43◦.
We probably want the acute angle, so we’ll go with 80.57◦.

A similar calculation for the other point gives 87.61◦.

DFEP #6: Wednesday, January 29th.

Find all intersections of the polar curve r = cos2(θ) with the line x =
1

4
.
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DFEP #6 Solution:

Okay, so we have the curve r = cos2(θ), and we want to know where x =
1

4
.

But x = r cos(θ), so r cos(θ) =
1

4
, which means cos3(θ) =

1

4
.

That means θ = cos−1
(

1
3
√

4

)
is one solution. Since cos(θ) = cos(−θ), we know

− cos−1
(

1
3
√

4

)
is another solution. In both cases, x =

1

4
, and y = r sin(θ) =

± cos2
(

cos−1
(

1
3
√

4

))
sin

(
cos−1

(
1
3
√

4

))
, which simplifies (using a comparison tri-

angle) to ±
√

42/3 − 1

4
. The two points, then are(
1

4
,

√
42/3 − 1

4

)
and

(
1

4
,−
√

42/3 − 1

4

)
.

DFEP #7: Friday, January 31st.

Let r(t) =

〈
2t − t, t2 − 4t,

1

1 + t2

〉
. Find T(t) at the point

(
27, 5,

1

26

)
.
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DFEP #7 Solution:

We want T(t) when r(t) =

〈
2t − t, t2 − 4t,

1

1 + t2

〉
at

(
27, 5,

1

26

)
, which is at t = 5.

Now r′(t) =

〈
ln(2)2t − 1, 2t− 4,

−2t

(1 + t2)2

〉
, which at t = 5 is:

r(t) =

〈
32 ln(2)− 1, 6,

−5

338

〉

T(t) =
1√

322 ln(2)2 − 64 ln(2) + 1 + 36 + 52

3382

〈
32 ln(2)− 1, 6,

−5

338

〉

DFEP #8: Monday, February 3rd.

The position of a bee over time on the interval [0,∞) is given by the vector function
r(t) = 〈cos(πt), t4− 4t3 + 4t2,

√
t〉. Compute the tangential and normal acceleration of

the bee after t = 4 seconds.

8



DFEP #8 Solution:

We are given the position vector r = 〈cos(πt), t4−4t3+4t2,
√
t〉 and we want tangential

and normal acceleration after t = 4 seconds.

First, we need r′(t) = 〈−π sin(πt), 4t3 − 12t2 + 8t, 1/(2
√
t)〉 (so r′(4) = 〈0, 96, 1/4〉) as

well as r′′(t) = 〈−π2 cos(πt), 12t2−24t+8,−1/(4
√
t3)〉 (so r′′(4) = 〈−π2, 104,−1/32〉).

The usual formulas tell us aT and aN :

aT =
r′(4) · r′′(4)

|r′(4)|
=

9983.99219√
962 + (1/4)2

≈ 103.9996

and

aN =
|r′(4)× r′′(4)|
|r′(4)|

=
|〈−29,−π2/4, 96π2〉|√

962 + (1/4)2
≈ 9.8742
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DFEP #9: Monday, February 10th.

Compute the all the partial derivatives (one for each variable) of the given functions:

(a) f(x, y) = x2y3 − xy + 5x3

(b) g(x, y) =
x2 + 1

xy + y2

(c) h(x, y, z) = (2 + arctan(x+ y2))z
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DFEP #9 Solution:

I don’t really have anything to say about this one. Here are some derivatives.

(a) fx(x, y) = 2xy3 − y + 13x2

fy(x, y) = 3x2y2 − x

(b) gx(x, y) =
2x(xy + y2)− y(x2 + 1)

(xy + y2)2

gy(x, y) =
−(x2 + 1)(x+ 2y)

(xy + y2)2

(c) hx(x, y, z) =
z(2 + arctan(x+ y2))z−1

1 + (x+ y2)2

hy(x, y, z) =
2yz(2 + arctan(x+ y2))z−1

1 + (x+ y2)2

hz(x, y, z) = (2 + arctan(x+ y2))z ln(2 + arctan(x+ y2))

DFEP #10: Wednesday, February 12th.

Consider the surface z = x3ey − 8 cos(y) + 4x sin(y).

Let P be the point where this surface intersects the x-axis.

Find the equation for the plane tangent to the surface at the point P .
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DFEP #10 Solution:

We want the tangent plane to z = x3ey − 8 cos(y) + 4x sin(y) at the point where it
intersects the x-axis.

At that point, the y- and z-coordinates are zero, so we have 0 = x3 − 8, so x = 2. So
the point is (2, 0, 0).

What’s the normal vector? We need the partial derivatives:

∂z

∂x
= 3x2ey + 4 sin(y) = 12

∂z

∂y
= x3ey + 8 sin(y) + 4x cos(y) = 16

So we get the plane z = 12(x− 2) + 16y.

DFEP #11: Friday, February 14th.

Find all critical points of the function f(x, y) = x+ 3y− ex − y3, and classify them as
local minima, local maxima, or saddle points.
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DFEP #11 Solution:

We need the critical points of f(x, y) = x + 3y − ex − y3, so we want to solve the
equations:

fx(x, y) = 1− ex = 0

fy(x, y) = 3− 3y2 = 0

Which has two solutions: (0, 1) and (0,−1). Let’s check D(x, y) at each point:

The second derivatives are fxx(x, y) = −ex, fyy(x, y) = −6y, and fxy(x, y) = 0.

So D(0, 1) = 6 and D(0,−1) = −6. Since fxx(x, y) < 0 for all (x, y), that means (0, 1)
is a local maximum and (0,−1) is a saddlepoint.

DFEP #12: Wednesday, February 19th.

Compute the volume of the solid between the plane z = 0 and the surface

z = y sin(2y) cos(xy)

over the region [0, 2]× [0, π/4].
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DFEP #12 Solution:

We want to compute ∫ 2

0

∫ π/4

0

y sin(2y) cos(xy) dy dx

Oh, wait, that seems maybe impossible. Let’s flip it around:

∫ π/4

0

∫ 2

0

y sin(2y) cos(xy) dx dy

That’s easier: y sin(2y) is a constant, and the antiderivative of cos(xy) with respect to
x is sin(xy)/y. So we get:

∫ π/4

0

(
sin(2y) sin(xy)

]2
0

)
dy

That’s just ∫ π/4

0

sin2(2y) dy =

∫ π/4

0

1

2
(1− cos(4y)) dy

which comes out to π/8.

DFEP #13: Friday, February 21st.

Compute the double integral

∫ e9

0

∫ 3

√
ln(y)

2xyex
2

dx dy

twice: once normally, and again by reversing the order of integration.
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DFEP #13 Solution:

Oof, why did I give you this problem? First of all, it’s straightforward enough as is:

∫ e9

0

∫ 3

√
ln(y)

2xyex
2

dx dy =

∫ e9

0

(
yex

2
)]3
√

ln(y)

dy =

∫ e9

0

(ye9 − y2) dy

which we can evaluate as
e9

2
y2 − 1

3
y3
]e9
0

=
e27

6
.

Did you notice that this is an improper integral, though? It totally is: x =
√

ln(0) is
undefined. This would not happen on a midterm, probably.

Reversing the order of integration gives a much-more-obviously improper integral:

∫ 3

−∞

∫ ex
2

0

2xyex
2

dy dx

which also comes out to
e27

6
.

DFEP #14: Monday, February 24th.

Compute the area inside the cardioid r = sin(θ) + 1 but outside the circle x2 + y2 = 1.
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DFEP #14 Solution:

Here’s a picture:

x

y

We want to integrate 1 over this domain. θ runs from 0 to π, and for any given θ, r
runs from 1 to 1 + sin(θ). So we want:

∫ π

0

∫ 1+sin(θ)

1

r dr dθ =

∫ π

0

(
1

2
r2
)]1+sin(θ)

1

dθ =
1

2

∫ π

0

(sin2(θ) + 2 sin(θ)) dθ

This becomes

1

2

∫ π

0

(
1

2
(1− cos(2θ)) + 2 sin(θ)

)
dθ =

1

2

(
x

2
− 1

4
sin(2θ)− 2 cos(θ)

)]π
0

which simplifies to
π

4
+ 2.

16


