### Math 126 Daily Fake Exam Problems

Winter 2020

The deal: every day I'll post an exam-like problem at the start of class, along with the answer to the problem from the previous class. Please attempt these problems!

## DFEP #1: Wednesday, January 15th.

Suppose  $\mathbf{a} = \langle -1, 8, 4 \rangle$ . Find a vector **b** so that:

- The angle between  $\mathbf{a}$  and  $\mathbf{b}$  is 60°,
- **b** is perpendicular to  $\mathbf{k}$ , and

• 
$$|\mathbf{b}| = 4.$$

Let's say that  $\mathbf{b} = \langle x, y, z \rangle$ . We know that  $\mathbf{b} \cdot \mathbf{k} = 0$ , so z = 0.

We also know that  $\mathbf{a} \cdot \mathbf{b} = -x + 8y + 4z = -x + 8y$ . But on the other hand,  $\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cos(60^\circ)$ . Since  $||\mathbf{a}|| = 9$  and  $||\mathbf{b}|| = 4$ , that means -x + 8y = 18, or x = 8y - 18.

Finally, since  $||\mathbf{b}|| = 4$ , we know that  $x^2 + y^2 = 16$ , so  $(8y - 18)^2 + y^2 = 16$ , which simplifies to  $65y^2 - 288y + 308 = 0$ .

Solving that tells us that 
$$y = \frac{288 \pm \sqrt{288^2 - 4 \cdot 65 \cdot 308}}{130} \approx 2.627$$
 or 1.804.

And since x = 8y - 18, that means we have two possible answers:

 $\mathbf{b} = \langle 3.016, 2.627, 0 \rangle$  or  $\mathbf{b} = \langle -3.570, 1.804, 0 \rangle$ 

#### DFEP #2: Friday, January 17th.

(a) Give the equation of a plane containing the line  $\frac{x-2}{4} = \frac{y}{-2} = \frac{z+6}{3}$  and the point (6, 1, 5).

(b) Find the intersection of this plane with the line  $\frac{x+1}{-6} = \frac{y-5}{2} = z - 7$ .

#### DFEP #2 Solution:

(a) We want a plane through the line  $\frac{x-2}{4} = \frac{y}{-2} = \frac{z+6}{3}$  and the point (6,1,5). Certainly this plane contains the line's direction vector  $\langle 4, -2, 3 \rangle$ . It also contains the points (2,0,-6) and (6,1,5), which means it contains the vector  $\langle 4, 1, 11 \rangle$ . So to find the normal vector, we can take the cross product  $\langle 4, -2, 3 \rangle \times \langle 4, 1, 11 \rangle$  to get  $\langle -25, -32, 12 \rangle$ . The plane with normal vector  $\langle -25, -32, 12 \rangle$  through the point (6,1,5) has equation

$$-25x - 32y + 12z = -25(6) - 32(1) + 12(5)$$

or

$$-25x - 32y + 12z = -122$$

(b) Let's write that line in parametric form: x = -1 - 6t, y = 5 + 2t, z = 7 + t. Plugging that into the equation of the plane yields

$$-25(-1-6t) - 32(5+2t) + 12(7+t) = -122$$

which we can solve to get  $t = -71/98 \approx -0.7245$ , so the point of intersection is (x, y, z) = (3.347, 3.551, 6.276).

#### DFEP #3: Wednesday, January 22nd:

Find the equation of an ellipsoid centered at (0, 1, -2) that passes through the points (8, 4, -2), (0, -4, -2), (0, -4, -2), (0, -4, -2).

### DFEP #3 Solution:

We want an ellipsoid centered at (0, 1, -2), so it should have the form

$$\frac{x^2}{a^2} + \frac{(y-1)^2}{b^2} + \frac{(z+2)^2}{c^2} = 1.$$

Plugging in (0, -4, -2) we can see that b = 5, and then plugging in (8, 4, -2) gives a = 10. Finally, plugging in (2, 2, 3) we get

$$\frac{2^2}{10^2} + \frac{1^2}{5^2} + \frac{5^2}{c^2} = 1$$

So  $\frac{25}{c^2} = \frac{23}{25}$ , so  $c^2 = \frac{625}{23}$  and we get the ellispoid

$$\frac{x^2}{100} + \frac{(y-1)^2}{25} + \frac{23(z+2)^2}{625} = 1.$$

## DFEP #4: Friday, January 24th:

Consider the vector function  $\mathbf{r} = \langle t+1, 2^t, 3t+2t^2 \rangle$ .

(a) Does the curve defined by **r** intersect the following line? If so, where?

$$\frac{x-15}{2} = y - 10 = 8 - z$$

- (b) Suppose **r** intersects the surface  $5x^2 + Cy^2 + 2z^2 = 1$  in the *yz*-plane. Solve for the constant *C*.
- (c) Describe the surface from part (b). Your answer should be a short phrase.

(a) We want to find the intersection of the vector functions  $\langle t+1, 2^t, 3t+2t^2 \rangle$  and  $\langle 15+2s, 10+s, 8-s \rangle$ . So we set their components equal:

$$t + 1 = 15 + 2s$$
  $2^t = 10 + s$   $3t + 2t^2 = 8 - s$ 

Yikes, let's ignore that second equation for now. Solving the first and third gives a quadratic  $4t^2 + 7t - 30 = 0$ , which factors as (4t + 15)(t - 2) = 0. So we have either t = 2, s = -6 or t = -15/4, s = -71/8. Plugging those into the second equation, we have t = 2, s = -6 as the only solution.

So where's the point? Plug t or s into the corresponding vector function to get (3, 4, 14) as the intersection.

- (b) Okay,  $\mathbf{r} = \langle t+1, 2^t, 3t+2t^2 \rangle$  intersects the *yz*-plane when x = 0, so t = -1, which is at the point  $(0, \frac{1}{2}, -1)$ . Since this intersects the curve  $5x^2 + Cy^2 + 2z^2 = 1$ , we have  $C(\frac{1}{2})^2 + 2 = 1$ , so C = -4.
- (c) The curve  $5x^2 4y^2 + 2z^2 = 1$  is a hyperboloid of one sheet, centered around the *y*-axis.

### DFEP #5: Monday, January 27th.

Consider the curve defined by the vector function  $\mathbf{r} = \langle t+6, t^3, e^{t^2-6t+8} \rangle$ .

- (a) Find all points where the curve intersects the plane z = 1.
- (b) Find the (acute) angle between the curve and the normal vector to the plane at each point from part (a).

### DFEP #5 Solution:

- (a) The curve defined by  $\langle t+6, t^3, e^{t^2-6t+8} \rangle$  intersects z=1 when its z-component is 1, which means that  $e^{t^2-6t+8} = 1$ . Therefore  $t^2 6t + 8 = 0$ , so t=2 or t=4. To find the points of intersection, we plug t=2 and t=4 back into the vector function to get (8, 8, 1) and (10, 64, 1).
- (b) We'll need to know the tangent vectors for the points from part (a). The derivative r'(t) = ⟨1, 3t<sup>2</sup>, (2t 6)e<sup>t<sup>2</sup>-6t+8</sup>⟩. At t = 2, this is the vector ⟨1, 12, -2⟩, and at t = 4 it's ⟨1, 48, 2⟩. To find the angle between the normal vector and the tangent vector: (1, 12, -2⟩ · ⟨0, 0, 1⟩ = ||⟨1, 12, -2⟩|| · 1 cos(θ), so θ = cos<sup>-1</sup>(-2/√149) ≈ 99.43°. We probably want the acute angle, so we'll go with 80.57°. A similar calculation for the other point gives 87.61°.

### DFEP #6: Wednesday, January 29th.

Find all intersections of the polar curve  $r = \cos^2(\theta)$  with the line  $x = \frac{1}{4}$ .

Okay, so we have the curve  $r = \cos^2(\theta)$ , and we want to know where  $x = \frac{1}{4}$ . But  $x = r\cos(\theta)$ , so  $r\cos(\theta) = \frac{1}{4}$ , which means  $\cos^3(\theta) = \frac{1}{4}$ . That means  $\theta = \cos^{-1}\left(\frac{1}{\sqrt[3]{4}}\right)$  is one solution. Since  $\cos(\theta) = \cos(-\theta)$ , we know  $-\cos^{-1}\left(\frac{1}{\sqrt[3]{4}}\right)$  is another solution. In both cases,  $x = \frac{1}{4}$ , and  $y = r\sin(\theta) = \pm \cos^2\left(\cos^{-1}\left(\frac{1}{\sqrt[3]{4}}\right)\right) \sin\left(\cos^{-1}\left(\frac{1}{\sqrt[3]{4}}\right)\right)$ , which simplifies (using a comparison triangle) to  $\pm \frac{\sqrt{4^{2/3} - 1}}{4}$ . The two points, then are  $\left(\frac{1}{4}, \frac{\sqrt{4^{2/3} - 1}}{4}\right)$  and  $\left(\frac{1}{4}, -\frac{\sqrt{4^{2/3} - 1}}{4}\right)$ 

DFEP #7: Friday, January 31st.

Let 
$$\mathbf{r}(t) = \left\langle 2^t - t, t^2 - 4t, \frac{1}{1+t^2} \right\rangle$$
. Find  $\mathbf{T}(t)$  at the point  $\left(27, 5, \frac{1}{26}\right)$ .

DFEP #7 Solution:

We want 
$$\mathbf{T}(t)$$
 when  $\mathbf{r}(t) = \left\langle 2^t - t, t^2 - 4t, \frac{1}{1+t^2} \right\rangle$  at  $\left(27, 5, \frac{1}{26}\right)$ , which is at  $t = 5$ .  
Now  $\mathbf{r}'(t) = \left\langle \ln(2)2^t - 1, 2t - 4, \frac{-2t}{(1+t^2)^2} \right\rangle$ , which at  $t = 5$  is:  
 $\mathbf{r}(t) = \left\langle 32\ln(2) - 1, 6, \frac{-5}{338} \right\rangle$   
 $\mathbf{T}(t) = \frac{1}{\sqrt{32^2\ln(2)^2 - 64\ln(2) + 1 + 36 + \frac{5^2}{338^2}}} \left\langle 32\ln(2) - 1, 6, \frac{-5}{338} \right\rangle$ 

## DFEP #8: Monday, February 3rd.

The position of a bee over time on the interval  $[0, \infty)$  is given by the vector function  $\mathbf{r}(t) = \langle \cos(\pi t), t^4 - 4t^3 + 4t^2, \sqrt{t} \rangle$ . Compute the tangential and normal acceleration of the bee after t = 4 seconds.

## DFEP #8 Solution:

We are given the position vector  $\mathbf{r} = \langle \cos(\pi t), t^4 - 4t^3 + 4t^2, \sqrt{t} \rangle$  and we want tangential and normal acceleration after t = 4 seconds.

First, we need  $\mathbf{r}'(t) = \langle -\pi \sin(\pi t), 4t^3 - 12t^2 + 8t, 1/(2\sqrt{t}) \rangle$  (so  $\mathbf{r}'(4) = \langle 0, 96, 1/4 \rangle$ ) as well as  $\mathbf{r}''(t) = \langle -\pi^2 \cos(\pi t), 12t^2 - 24t + 8, -1/(4\sqrt{t^3}) \rangle$  (so  $\mathbf{r}''(4) = \langle -\pi^2, 104, -1/32 \rangle$ ). The usual formulas tell us  $a_T$  and  $a_N$ :

$$a_T = \frac{r'(4) \cdot r''(4)}{|r'(4)|} = \frac{9983.99219}{\sqrt{96^2 + (1/4)^2}} \approx 103.9996$$

and

$$a_N = \frac{|r'(4) \times r''(4)|}{|r'(4)|} = \frac{|\langle -29, -\pi^2/4, 96\pi^2 \rangle|}{\sqrt{96^2 + (1/4)^2}} \approx 9.8742$$

# DFEP #9: Monday, February 10th.

Compute the all the partial derivatives (one for each variable) of the given functions:

(a) 
$$f(x,y) = x^2y^3 - xy + 5x^3$$
  
(b)  $g(x,y) = \frac{x^2 + 1}{xy + y^2}$ 

(c) 
$$h(x, y, z) = (2 + \arctan(x + y^2))^z$$

I don't really have anything to say about this one. Here are some derivatives.

(a) 
$$f_x(x,y) = 2xy^3 - y + 13x^2$$
  
 $f_y(x,y) = 3x^2y^2 - x$   
(b)  $g_x(x,y) = \frac{2x(xy+y^2) - y(x^2+1)}{(xy+y^2)^2}$   
 $g_y(x,y) = \frac{-(x^2+1)(x+2y)}{(xy+y^2)^2}$   
(c)  $h_x(x,y,z) = \frac{z(2 + \arctan(x+y^2))^{z-1}}{1 + (x+y^2)^2}$   
 $h_y(x,y,z) = \frac{2yz(2 + \arctan(x+y^2))^{z-1}}{1 + (x+y^2)^2}$   
 $h_z(x,y,z) = (2 + \arctan(x+y^2))^z \ln(2 + \arctan(x+y^2))^z$ 

## DFEP #10: Wednesday, February 12th.

Consider the surface  $z = x^3 e^y - 8\cos(y) + 4x\sin(y)$ . Let P be the point where this surface intersects the x-axis. Find the equation for the plane tangent to the surface at the point P. We want the tangent plane to  $z = x^3 e^y - 8\cos(y) + 4x\sin(y)$  at the point where it intersects the x-axis.

At that point, the y- and z-coordinates are zero, so we have  $0 = x^3 - 8$ , so x = 2. So the point is (2, 0, 0).

What's the normal vector? We need the partial derivatives:

$$\frac{\partial z}{\partial x} = 3x^2 e^y + 4\sin(y) = 12$$
$$\frac{\partial z}{\partial y} = x^3 e^y + 8\sin(y) + 4x\cos(y) = 16$$

So we get the plane z = 12(x - 2) + 16y.

## DFEP #11: Friday, February 14th.

Find all critical points of the function  $f(x, y) = x + 3y - e^x - y^3$ , and classify them as local minima, local maxima, or saddle points.

### DFEP #11 Solution:

We need the critical points of  $f(x, y) = x + 3y - e^x - y^3$ , so we want to solve the equations:

$$f_x(x, y) = 1 - e^x = 0$$
  
 $f_y(x, y) = 3 - 3y^2 = 0$ 

Which has two solutions: (0, 1) and (0, -1). Let's check D(x, y) at each point: The second derivatives are  $f_{xx}(x, y) = -e^x$ ,  $f_{yy}(x, y) = -6y$ , and  $f_{xy}(x, y) = 0$ . So D(0, 1) = 6 and D(0, -1) = -6. Since  $f_{xx}(x, y) < 0$  for all (x, y), that means (0, 1) is a local maximum and (0, -1) is a saddlepoint.

### DFEP #12: Wednesday, February 19th.

Compute the volume of the solid between the plane z = 0 and the surface

$$z = y\sin(2y)\cos(xy)$$

over the region  $[0, 2] \times [0, \pi/4]$ .

We want to compute

$$\int_0^2 \int_0^{\pi/4} y \sin(2y) \cos(xy) \, dy \, dx$$

Oh, wait, that seems maybe impossible. Let's flip it around:

$$\int_0^{\pi/4} \int_0^2 y \sin(2y) \cos(xy) \, dx \, dy$$

That's easier:  $y \sin(2y)$  is a constant, and the antiderivative of  $\cos(xy)$  with respect to x is  $\sin(xy)/y$ . So we get:

$$\int_0^{\pi/4} \left( \sin(2y) \sin(xy) \right]_0^2 dy$$

That's just

$$\int_0^{\pi/4} \sin^2(2y) \, dy = \int_0^{\pi/4} \frac{1}{2} (1 - \cos(4y)) \, dy$$

which comes out to  $\pi/8$ .

## DFEP #13: Friday, February 21st.

Compute the double integral

$$\int_0^{e^9} \int_{\sqrt{\ln(y)}}^3 2xy e^{x^2} \, dx \, dy$$

twice: once normally, and again by reversing the order of integration.

Oof, why did I give you this problem? First of all, it's straightforward enough as is:

$$\int_{0}^{e^{9}} \int_{\sqrt{\ln(y)}}^{3} 2xy e^{x^{2}} \, dx \, dy = \int_{0}^{e^{9}} \left( y e^{x^{2}} \right) \Big]_{\sqrt{\ln(y)}}^{3} \, dy = \int_{0}^{e^{9}} \left( y e^{9} - y^{2} \right) \, dy$$

which we can evaluate as

$$\frac{e^9}{2}y^2 - \frac{1}{3}y^3\Big]_0^{e^9} = \frac{e^{27}}{6}.$$

Did you notice that this is an improper integral, though? It totally is:  $x = \sqrt{\ln(0)}$  is undefined. This would not happen on a midterm, probably.

Reversing the order of integration gives a much-more-obviously improper integral:

$$\int_{-\infty}^{3} \int_{0}^{e^{x^2}} 2xy e^{x^2} \, dy \, dx$$

which also comes out to  $\frac{e^{27}}{6}$ .

# DFEP #14: Monday, February 24th.

Compute the area inside the cardioid  $r = \sin(\theta) + 1$  but outside the circle  $x^2 + y^2 = 1$ .

Here's a picture:



We want to integrate 1 over this domain.  $\theta$  runs from 0 to  $\pi$ , and for any given  $\theta$ , r runs from 1 to  $1 + \sin(\theta)$ . So we want:

$$\int_0^{\pi} \int_1^{1+\sin(\theta)} r \, dr \, d\theta = \int_0^{\pi} \left(\frac{1}{2}r^2\right) \Big]_1^{1+\sin(\theta)} \, d\theta = \frac{1}{2} \int_0^{\pi} (\sin^2(\theta) + 2\sin(\theta)) \, d\theta$$

This becomes

$$\frac{1}{2} \int_0^\pi \left( \frac{1}{2} (1 - \cos(2\theta)) + 2\sin(\theta) \right) \, d\theta = \frac{1}{2} \left( \frac{x}{2} - \frac{1}{4} \sin(2\theta) - 2\cos(\theta) \right) \Big|_0^\pi$$

which simplifies to  $\frac{\pi}{4} + 2$ .