Here's a list of things you should know for the final exam.

Proof Techniques

- 1. Ways to prove $P \to Q$.
 - (a) Direct proof: assume P is true and prove that Q is true.
 - (b) Proof by contrapositive: assume Q is false and prove that P is false.
 - (c) Proof by contradiction: assume P is true and Q is false, and then deduce a contradiction.
 - (d) Proof by cases: to show $(P \lor Q) \to R$, show that $P \to R$ and $Q \to R$.
- 2. Inductive proofs
 - (a) Basic induction: prove the base case, then the inductive step: $P(n) \rightarrow P(n+1)$.
 - (b) Strong induction: prove the base case, and then prove: $(\forall k \leq n, P(k)) \rightarrow P(n+1)$.
- 3. Proofs involving sets
 - (a) Element-chasing: to prove $A \subseteq B$, assume $x \in A$, then prove $x \in B$.
 - (b) To prove A = B, prove $A \subseteq B$ and $B \subseteq A$.
 - (c) To prove $A = \emptyset$, assume $x \in A$ and then deduce a contradiction.
- 4. Proofs involving functions
 - (a) To prove that $f: A \to B$ is injective, assume f(x) = f(y), and prove x = y.
 - (b) To prove that $f: A \to B$ is surjective, assume $y \in B$, and show that there must exist an x such that f(x) = y.
 - (c) To prove f is bijective, prove that f is injective and surjective.
- 5. Proofs involving Countability
 - (a) To prove $A \approx B$, find a bijection $f : A \to B$. Or find two injections $f : A \to B$ and $g : B \to A$.
 - (b) To prove A is countable, find a bijection $f : \mathbb{N} \to A$. Equivalently, arrange the elements of A into an infinitely long list that can be labeled with natural numbers.
 - (c) To prove A is uncountable, assume there exists a list of elements of A like the above, then prove there must be an element not on that list. Or, prove that $A \approx B$ where B is some set that is known to be uncountable.
- 6. Miscellaneous techniques (possibly useful on a bonus problem)
 - (a) Invariants: prove that no matter how you do something, some property will hold. Use that property to prove something else.
 - (b) Infinite descent: prove that there's no smallest natural number with some property, and therefore there are no natural numbers with that property.

1. Logical operators

- $\lor, \land, \neg, \rightarrow, \Leftrightarrow$
- Truth tables
- De Morgan's laws

2. Number systems

- Same big list of axioms and theorems that you had on the midterm
- Parity
- Divisibility
- Modular arithmetic

3. Sets

- Elements and subsets
- Unions, intersections, complements, and set differences
- De Morgan's laws again
- Power sets
- Cartesian products
- Disjoint sets

4. Functions

- Injections, surjections, and bijections
- Composition
- Inverse functions and inverse images

5. Cardinality

- Equinumerous sets
- Countable and uncountable sets