Name: Sav Ushin Student ID #: 555 5555

1. **[4 points]** Let
$$A = \begin{bmatrix} 3 & 9 \\ 1 & 4 \end{bmatrix}$$
. Compute A^{-1} .

Quich formula:
$$A^{-1} = \frac{1}{3 \cdot 4 - 1 \cdot 9} \begin{bmatrix} 4 & -9 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} \frac{4}{3} & -3 \\ \frac{-1}{3} & 1 \end{bmatrix}$$

2. [3 points] Let $T(\mathbf{x}) = \begin{bmatrix} -7 & 3 & 2 \\ -2 & -2 & -3 \end{bmatrix} \mathbf{x}$. Which of these vectors are in the kernel of *T*?

(No credit for just circling the right answer. Show some justification!)

3. **[3 points]** Let *S* be the set of vectors $\begin{bmatrix} a \\ b \end{bmatrix}$ where $a^2 = b^2$. Is *S* a subspace of \mathbb{R}^2 ? Explain.

No!
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ are in S since $\begin{bmatrix} 2 \\ -1 \end{bmatrix}^2$.
But $\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ is not in S since $2^2 \neq 0^2$.