1. [4 points] Let $A=\left[\begin{array}{ll}3 & 9 \\ 1 & 4\end{array}\right]$. Compute A^{-1}.

2. [3 points] Let $T(\mathbf{x})=\left[\begin{array}{rrr}-7 & 3 & 2 \\ -2 & -2 & -3\end{array}\right] \mathbf{x}$. Which of these vectors are in the kernel of T ? (No credit for just circling the right answer. Show some justification!)

$$
T\left(\left[\begin{array}{c}
-7 \\
3 \\
2
\end{array}\right]\right)=\left[\begin{array}{ccc}
-7 & 3 & 2 \\
-2 & -2 & -3
\end{array}\right]\left[\begin{array}{c}
-7 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
62 \\
2
\end{array}\right]
$$

so, nope!
3. [3 points] Let S be the set of vectors $\left[\begin{array}{l}a \\ b\end{array}\right]$ where $a^{2}=b^{2}$. Is S a subspace of \mathbb{R}^{2} ? Explain.

$$
\begin{aligned}
& \text { No! }\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { are in } S \text {, since } P^{2}=(-1)^{2} \text {. } \\
& \text { But }\left[\begin{array}{l}
1 \\
-1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \text { is n+ in, s, sine } 2^{2} \neq 0^{2} \text {. }
\end{aligned}
$$

