1. [4 points] Let $A=\left[\begin{array}{ll}3 & 9 \\ 1 & 4\end{array}\right]$. Compute A^{-1}.
2. [3 points] Let $T(\mathbf{x})=\left[\begin{array}{rrr}-7 & 3 & 2 \\ -2 & -2 & -3\end{array}\right] \mathbf{x}$. Which of these vectors are in the kernel of T ? (No credit for just circling the right answer. Show some justification!)

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad\left[\begin{array}{r}
-7 \\
3 \\
2
\end{array}\right] \quad\left[\begin{array}{r}
1 \\
5 \\
-4
\end{array}\right]
$$

3. [3 points] Let S be the set of vectors $\left[\begin{array}{l}a \\ b\end{array}\right]$ where $a^{2}=b^{2}$. Is S a subspace of \mathbb{R}^{2} ? Explain.
