Name: Saul Ushin
Student ID \#:

1. [4 points] Compute $\left[\begin{array}{cc}4 & 1 \\ 0 & 1 \\ -1 & 3\end{array}\right]\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 2 & 1\end{array}\right]$.

$$
\begin{aligned}
& 4 \cdot 0+1 \cdot 2=2 \text {, } \\
& \text { etc. } \\
& {\left[\begin{array}{ccc}
13 & 2 & -3 \\
5 & 2 & 1 \\
13 & 6 & 4
\end{array}\right]}
\end{aligned}
$$

2. [2 points] Give an example of two 2×2 matrices A and B such that $A B=B A$.

$$
\left.A=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right]\right] e \cdot g .
$$

3. [4 points] Oh no, a witch cast another linear transformation spell on Victor!

On the left is Victor's original form, and on the right is Victor after the witch applies the linear transformation T.

Below, draw what Victor looks like after the witch applies T again.

$$
\begin{aligned}
& T(\vec{x})=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 0
\end{array}\right] \vec{x} \\
& {\left[\begin{array}{ll}
-1 & 1 \\
-2 & 0
\end{array}\right]^{2}=\left[\begin{array}{cc}
-1 & -1 \\
2 & -2
\end{array}\right]}
\end{aligned}
$$

