1. [5 points] Find a value of x for which the following vectors are linearly dependent:

$$
\text { this matrix: }\left[\begin{array}{ccc}
5 & 7 & 1 \\
-1 & -4 & 5 \\
2 & 8 & x
\end{array}\right] \sum \sim\left[\begin{array}{ccc}
-1 & -4 & 5 \\
5 & 7 & 1 \\
2 & 8 & x
\end{array}\right] \rightarrow R_{2}+5 R_{1}+2 R_{1}
$$

$$
\sim\left[\begin{array}{ccc}
-1 & -4 & 5 \\
0 & -13 & 26 \\
0 & 0 & x+10
\end{array}\right]
$$

dependent if some column has no pivot, ie. if $x+10=0$

$$
x=-10
$$

2. [2 points] For that value of x, describe span $\left\{\left[\begin{array}{r}5 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{r}7 \\ -4 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ x\end{array}\right]\right\}$ geometrically.
Well, there's a row of all O^{\prime} 's in the above matrix, so it's nor all of \mathbb{R}^{3}.
The span is just a plane in \mathbb{R}^{3}.
3. [3 points] Find all values of x for which the following vectors are linearly dependent. $\begin{aligned} & \text { Any real number! There } \\ & \text { are more vectors than }\end{aligned}\left[\begin{array}{l}1 \\ 0 \\ 7\end{array}\right],\left[\begin{array}{r}5 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{r}7 \\ -4 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ x\end{array}\right]$ dimensions, so they are always linearly dependent.
