Math 308 M - Spring 2017 Midterm Exam Number Two May 17, 2017

Name:
 Student ID no. : 1234567

Section: \qquad

1	15	15
2	12	12
3	12	12
4	12	12
5	15	15
6	24	24
7	10	10
Total	100	100

- This exam consists of SEVEN problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You may use a scientific, non-graphing, non-algebraic calculator during this exam. Other calculators and electronic device are not permitted.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- Draw a box around your final answer to each problem.
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 50 minutes to complete the exam.

1. [5 points per part] Determine whether or not each subset of \mathbb{R}^{n} is a subspace.
(No points for just guessing. Explain!)
(a) The set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ in \mathbb{R}^{4} such that $x_{1} x_{2}-x_{3} x_{4}=0$. No. For example, $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$ are in this set, but their sum $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$ isn't.
(b) The set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ in \mathbb{R}^{3} such that x_{2} is an integer. No. For example, $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is in this set bot $1 / 2\left[\begin{array}{l}{\left[\begin{array}{l}0 \\ 0\end{array}\right] \text { sst }}\end{array}\right]$
(c) The set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ in \mathbb{R}^{3} such that $x_{1}+x_{2}=x_{3}$ and $x_{1}-x_{2}=2 x_{3}$. Yes. Write the equations as $\begin{aligned} & x_{1}+x_{2}-x_{3}=0 \\ & x_{1}-x_{2}-2 x_{3}=0\end{aligned}$.

The solution is the null space of $\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & -1 & -2\end{array}\right]$, which is a subspace.
2. [12 points] Find a vector \mathbf{u} such that $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{r}5 \\ -4 \\ -6\end{array}\right], \mathbf{u}\right\}$ is a basis for \mathbb{R}^{3}.
Reduce: $\left[\begin{array}{ccccc}1 & 5 & 1 & 0 & 0 \\ 2 & -4 & 0 & 1 & 0\end{array}\right] R_{2}-2 R_{1}$

$$
\begin{aligned}
& \sim\left[\begin{array}{ccccc}
1 & 5 & 1 & 0 & 0 \\
0 & -14 & -2 & 1 & 0 \\
0 & -21 & -3 & 0 & 1
\end{array}\right] \rightarrow R_{3}-\frac{3}{2} R_{2}\left[\begin{array}{ccccc}
1 & 5 & 1 & 0 & 0 \\
0 & -14 & -2 & 1 & 0 \\
0 & 0 & 0 & \frac{-3}{2} & 1 \\
\uparrow & \uparrow & \uparrow & \\
\hline
\end{array}\right. \\
& \text { basis is }\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{c}
5 \\
-4 \\
-6
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \begin{array}{l}
3 \text { pilot columns } \\
\vec{u}
\end{array} \\
& \text { 3. [4 points per part] Let } A=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right] . R_{3}-R_{1} \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(a) Write a basis for row (A).

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

(b) Write a basis for col (A).

$A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\stackrel{(c)}{\text { Write a basis for null }(A) \text {. }} \begin{aligned} & x_{3}=s_{1} \\ & x_{4}=s_{2} \\ & x_{1}+s_{2}=0 \\ & x_{2}+s_{1}+s_{2}=0\end{aligned} \rightarrow\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-s_{2} \\ -s_{1}-s_{2} \\ s_{1} \\ s_{2}\end{array}\right]=s_{1}\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right]+s_{2}\left[\begin{array}{c}-1 \\ -1 \\ 0 \\ 1\end{array}\right]$

4. [12 points] Let $A=\left[\begin{array}{lll}1 & 1 & 4 \\ 1 & 0 & 3 \\ 2 & 0 & 5\end{array}\right]$. Find A^{-1}.

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 1 & 4 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
2 & 0 & 5 & 0 & 0 & 1
\end{array}\right] \rightarrow R_{2}-R_{3} \sim 2 R_{1} \sim\left[\begin{array}{ccc|ccc}
1 & 1 & 4 & 1 & 0 & 0 \\
0 & -1 & -1 & -1 & 1 & 0 \\
0 & -2 & -3 & -2 & 0 & 1
\end{array}\right] \rightarrow R_{3}-2 R_{2}} \\
& \sim\left[\begin{array}{ccc|ccc}
1 & 1 & 4 & 1 & 0 & 0 \\
0 & -1 & -1 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 & -2 & 1
\end{array}\right] \rightarrow\left(-(-1) \sim\left[\begin{array}{ccc|ccc}
1 & 1 & 4 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & -1 & 0 \\
0 & -4 R_{3} \\
0 & 0 & 1 & 0 & 2 & -1
\end{array}\right] \xrightarrow{2}-R_{3}\right. \\
& {\left[\begin{array}{lll}
5 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & -8 & 4 \\
0 & 1 & 0 & 1 & -3 & 1 \\
0 & 0 & 1 & 0 & 2 & -1
\end{array}\right] \sim R_{1}-R_{2}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & -5 & 3 \\
0 & 1 & 0 & 1 & -3 & 1 \\
0 & 0 & 1 & 0 & 2 & -1
\end{array}\right]} \\
& \text { 5. [15 points] Let } A=\left[\begin{array}{lll}
5 & 1 & 1 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \text {. }
\end{aligned}
$$

(a) Find all eigenvalues for A.

$$
\begin{aligned}
& \text { Triangular! So, } \lambda=5 \quad \& \quad \lambda=4 \\
& \text { w/ multipicicty } 2
\end{aligned}
$$

(b) For each of the eigenvalues you found in part (a), find a basis for the corresponding eigenspace of A.

$$
\begin{aligned}
& \text { eigenspace of } A \text {. } \\
& \lambda=5 \text { : basis for null space of }\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\overrightarrow{0} \rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=s_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \rightarrow\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} \\
& \lambda=4: \text { basis for null space of }\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\overrightarrow{0} \rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=s_{1}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+s_{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\left\{\left[\begin{array}{c}
-17 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

6. [24 points] A matrix merchant shows up at your door and offers to buy some matrices from you, for 8 points each. Give him the following matrices:
(a) A matrix with eigenvalues 4 and -2 and corresponding eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 3\end{array}\right]$.

$$
\begin{gathered}
A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right] \rightarrow \text { need } A\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-6
\end{array}\right], \quad A=\left[\begin{array}{ll}
4 & -2 \\
0 & ? \\
0 & -2
\end{array}\right]
\end{gathered}
$$

(b) A matrix A such that A^{6} is the identity matrix, but A, A^{2}, A^{3}, A^{4}, and A^{5} are not. One way: rotation matrix!

$$
A=\left[\begin{array}{cc}
\cos \left(60^{\circ}\right) & -\sin \left(60^{\circ}\right) \\
\sin \left(60^{\circ}\right) & \cos \left(60^{\circ}\right)
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{-\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]
$$

$$
\text { This also works: } \left.\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(c) A matrix whose column space and null space are equal.

Need a $2 n \approx 2 n$ matrix with rank n whose square is 0 .

$$
\text { Examples: } \left.\left[\begin{array}{lll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right], \cdots
$$

7. [10 points] Find all values of c for which the matrix $\left[\begin{array}{rrrr}4 & 1 & 0 & 0 \\ 5 & 1 & 4 & 3 \\ 2 & 3 & 0 & c \\ -7 & -1 & 0 & c\end{array}\right]$ has determinant 1. determinant $=-4\left|\begin{array}{ccc}4 & 1 & 0 \\ 2 & 3 & c \\ -7 & -1 & c\end{array}\right|=-4(-c\left|\begin{array}{cc}4 & 1 \\ -7 & -1\end{array}\right|+<\underbrace{\left|\begin{array}{cc}4 & 1 \\ 2 & 3\end{array}\right|}_{3})$

$$
=-4(7 c)=1 \rightarrow c=\frac{-1}{28}
$$

8. [0 points] Finished early? Here's a sudoku.

The numbers in each dashed box must form a 2×2 matrix with determinant 0 .

