Math 308 M - Spring 2017 Midterm Exam Number Two May 17, 2017

Name: \qquad Student ID no. : \qquad
Signature: \qquad Section: \qquad

1	15	
2	12	
3	12	
4	12	
5	15	
6	24	
7	10	
Total	100	

- This exam consists of SEVEN problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You may use a scientific, non-graphing, non-algebraic calculator during this exam. Other calculators and electronic device are not permitted.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- Draw a box around your final answer to each problem.
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 50 minutes to complete the exam.

1. [5 points per part] Determine whether or not each subset of \mathbb{R}^{n} is a subspace.
(No points for just guessing. Explain!)
(a) The set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ in \mathbb{R}^{4} such that $x_{1} x_{2}-x_{3} x_{4}=0$.
(b) The set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ in \mathbb{R}^{3} such that x_{2} is an integer.
(c) The set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ in \mathbb{R}^{3} such that $x_{1}+x_{2}=x_{3}$ and $x_{1}-x_{2}=2 x_{3}$.
2. [12 points] Find a vector \mathbf{u} such that $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{r}5 \\ -4 \\ -6\end{array}\right], \mathbf{u}\right\}$ is a basis for \mathbb{R}^{3}.
3. [4 points per part] Let $A=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$.
(a) Write a basis for $\operatorname{row}(A)$.
(b) Write a basis for $\operatorname{col}(A)$.
(c) Write a basis for $\operatorname{null}(A)$.
4. [12 points] Let $A=\left[\begin{array}{lll}1 & 1 & 4 \\ 1 & 0 & 3 \\ 2 & 0 & 5\end{array}\right]$. Find A^{-1}.
5. [15 points] Let $A=\left[\begin{array}{lll}5 & 1 & 1 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$.
(a) Find all eigenvalues for A.
(b) For each of the eigenvalues you found in part (a), find a basis for the corresponding eigenspace of A.
6. [24 points] A matrix merchant shows up at your door and offers to buy some matrices from you, for 8 points each. Give him the following matrices:
(a) A matrix with eigenvalues 4 and -2 and corresponding eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
(b) A matrix A such that A^{6} is the identity matrix, but A, A^{2}, A^{3}, A^{4}, and A^{5} are not.
(c) A matrix whose column space and null space are equal.
7. [10 points] Find all values of c for which the matrix $\left[\begin{array}{rrrr}4 & 1 & 0 & 0 \\ 5 & 1 & 4 & 3 \\ 2 & 3 & 0 & c \\ -7 & -1 & 0 & c\end{array}\right]$ has determinant 1 .
8. [0 points] Finished early? Here's a sudoku.

The numbers in each dashed box must form a 2×2 matrix with determinant 0 .

