Math 308 L - Spring 2017 Midterm Exam Number One April 19, 2017

Name: \qquad
Signature:

Student ID no. : \qquad
Section: \qquad

1	15	
2	12	
3	14	
4	15	
5	10	
6	12	
7	10	
8	12	
Total	100	

- This exam consists of EIGHT problems on FIVE pages, including this cover sheet.
- Show all work for full credit.
- You may use a scientific, non-graphing, non-algebraic calculator during this exam. Other calculators and electronic device are not permitted.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- Draw a box around your final answer to each problem.
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 50 minutes to complete the exam.

1. [15 points] Below is a traffic diagram of three intersections.

Find the general solution for $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.
traffic in =traffic out :
$\begin{array}{rlrl}20+x_{1} & =x_{2} & x_{1}-x_{2}=-20 \\ x_{2} & =x_{3}+60 & \rightarrow & x_{2}-x_{3}=60 \\ x_{3}+x_{4} & =x_{1}+50 & -x_{1}+x_{3}+x_{4}=50\end{array}$
$\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & -20 \\ 0 & 1 & -1 & 0 & 60 \\ -1 & 0 & 1 & 1 & 50\end{array}\right] \rightarrow R_{3}+R_{1}\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & -20 \\ 0 & 1 & -1 & 0 & 60 \\ 0 & -1 & 1 & 1 & 30\end{array}\right] \rightarrow R_{3}+R_{2}$
$\sim\left[\begin{array}{ccccc}1 & -1 & 0 & 0 & -20 \\ 0 & 1 & -1 & 0 & 60 \\ 0 & 0 & 0 & 1 & 90\end{array}\right] \rightarrow R_{1}+R_{2} \sim\left[\begin{array}{ccccc}1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 6 \\ 0 & 0 & 0 & 1 & 9 \\ 0\end{array}\right] \rightarrow \begin{aligned} & x_{1}=40+s_{1} \\ & x_{2}=60+s_{1} \\ & x_{3}=5_{1} \\ & x_{4}=90\end{aligned}$
2. [12 points] Write the following matrix in reduced echelon form. (Found a shortcut? Great! But please explain it.)

$$
\sim\left[\begin{array}{ccccc}
1 & 3 & 5 & -9 & 2 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left.\sim\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 3 & 5 & -9 & 2
\end{array}\right] \rightarrow R_{6}-R_{1}-3 R_{2}-5 R_{3}+9 R_{4}-2 R_{5}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\right]
$$

3. [14 points] Can you write the vector $\left[\begin{array}{c}-4 \\ 5 \\ 5\end{array}\right]$ as a linear combination of $\left[\begin{array}{c}6 \\ 3 \\ 10\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 1 \\ 5\end{array}\right]$? Let's solve: $x_{1}\left[\begin{array}{l}4 \\ 1 \\ 5\end{array}\right]+x_{2}\left[\begin{array}{c}6 \\ 3 \\ 10\end{array}\right]=\left[\begin{array}{c}-4 \\ 5 \\ 5\end{array}\right] \rightarrow\left[\begin{array}{ccc}4 & 6 & -4 \\ 1 & 3 & 5 \\ 5 & 10 & 5\end{array}\right] \sim\left[\begin{array}{ccc}1 & 3 & 5 \\ 4 & 6 & -4 \\ 5 & 10 & 5\end{array}\right] \rightarrow R_{2}-4 R_{1}$ $\sim\left[\begin{array}{ccc}1 & 3 & 5 \\ 0 & -6 & -24 \\ 0 & -5 & -20\end{array}\right] \div(-6) \sim(-5) \sim\left[\begin{array}{ccc}1 & 3 & 5 \\ 0 & 1 & 4 \\ 0 & 1 & 4\end{array}\right] \rightarrow R_{1}--R_{2} \sim R_{2} \sim\left[\begin{array}{ccc}1 & 0 & -7 \\ 0 & 1 & 4 \\ 0 & 0 & 0\end{array}\right] \rightarrow x_{1}=-7$

$$
\left[\begin{array}{c}
-4 \\
5 \\
5
\end{array}\right]=-7\left[\begin{array}{c}
4 \\
1 \\
5
\end{array}\right]+4\left[\begin{array}{c}
6 \\
3 \\
10
\end{array}\right]
$$

4. [15 points] Here are four vectors: $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ z_{1}\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ z_{2}\end{array}\right]$.
(a) For what values of z_{1} and z_{2} do these vectors span \mathbb{R}^{3} ?

$$
\text { Seduce }\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
2 & 4 & 2 & 0 \\
-1 & 1 & z_{1} & z_{2}
\end{array}\right] R_{2}-2 R_{1} \sim R_{1} \sim\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
0 & 2 & 4 & -2 \\
0 & 2 & z_{1}-1 & z_{2}+1
\end{array}\right] \rightarrow R_{3}-R_{2}
$$

$$
\sim\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
0 & 2 & 4 & -2 \\
0 & 0 & z_{1}^{-5} & z_{2}+3
\end{array}\right] \longleftarrow \text { spans } \mathbb{R}^{3} \text { if and only if this row }
$$

is not all zeroes, so unless $z_{1}=5 \& z_{2}=-3$.
(b) For what values of z_{1} and z_{2} are these vectors linearly independent?

None! 4 vectors in \mathbb{R}^{3} are always linearly dependent.
5. [10 points] Below on the left is a picture of Victor, a humble unit square chilling in \mathbb{R}^{2}.

One day, a witch cursed him with a linear transformation, turning him into the parallelogram on the right!

The witch's spell was formed by applying the function $T(\mathbf{x})=A \mathbf{x}$ for some matrix A. What's A ?

6. [12 points] Find three vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$, and \mathbf{u}_{3} such that each of the pairs $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\},\left\{\mathbf{u}_{1}, \mathbf{u}_{3}\right\}$, and $\left\{\mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ are linearly independent, but $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ are linearly dependent.

Any 3 non-parallel vectors that lie in a plane.

for example.
7. [10 points] Let $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-4 \\ x_{1}+x_{2}\end{array}\right]$. Is this a linear transformation? Why or why not?
8. [3 points per part] Here, I bought you this linear transformation:

$$
T(\mathbf{x})=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \mathbf{x}
$$

Answer the following questions. Explain your reasoning!
(a) What's the domain of T ?
 because there are 4 columns.
(b) What's the codomain of T ?
\mathbb{D}^{34} because there are 3 rows.
(c) Is T one-to-one?

No! Four column vectors in \mathbb{R}^{3} cannot be linearly independent.
(d) Is T onto?

Yes! The column vectors span \mathbb{R}^{3}. (You can tell because the matrix is in echelon form and there's no row of all zeroes.)

