## Math 308 L - Spring 2017 Midterm Exam Number One April 19, 2017

Name: \_\_\_\_\_\_ Signature: \_\_\_\_\_ Student ID no. : \_\_\_\_\_\_ \_\_\_\_\_ Section: \_\_\_\_\_\_

- This exam consists of EIGHT problems on FIVE pages, including this cover sheet.
- Show all work for full credit.
- You may use a scientific, non-graphing, non-algebraic calculator during this exam. Other calculators and electronic device are not permitted.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- Draw a box around your final answer to each problem.
- You may use one hand-written double-sided 8.5" by 11" page of notes.
- You have 50 minutes to complete the exam.

1. **[15 points]** Below is a traffic diagram of three intersections.

Find the general solution for  $(x_1, x_2, x_3, x_4)$ .



|    |                                                                 | [1] | 3  | 5 | -9 | $2^{-}$ | l |
|----|-----------------------------------------------------------------|-----|----|---|----|---------|---|
|    |                                                                 | 2   | 12 | 4 | 1  | 0       |   |
| C  | [12 maintel] White the following matrix in reduced ashelon form | 0   | -2 | 1 | 3  | 9       |   |
| ۷. | [12 points] while the following matrix in reduced echelon form. | 0   | 0  | 2 | -6 | 5       | ļ |
|    | (Found a shortcut? Great! But please explain it )               | 0   | 0  | 0 | 1  | 2       |   |
|    | (round a bhorteatr Greatr Dat preuse exprant th)                | 0   | 0  | 0 | 0  | 3       |   |

3. **[14 points]** Can you write the vector  $\begin{bmatrix} -4\\5\\5 \end{bmatrix}$  as a linear combination of  $\begin{bmatrix} 6\\3\\10 \end{bmatrix}$  and  $\begin{bmatrix} 4\\1\\5 \end{bmatrix}$ ?

- 4. **[15 points]** Here are four vectors:  $\begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\4\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\z_1 \end{bmatrix}, \begin{bmatrix} 1\\0\\z_2 \end{bmatrix}.$ 
  - (a) For what values of  $z_1$  and  $z_2$  do these vectors span  $\mathbb{R}^3$ ?

(b) For what values of  $z_1$  and  $z_2$  are these vectors linearly **independent**?

[10 points] Below on the left is a picture of Victor, a humble unit square chilling in ℝ<sup>2</sup>.
One day, a witch cursed him with a linear transformation, turning him into the parallelogram on the right!



The witch's spell was formed by applying the function  $T(\mathbf{x}) = A\mathbf{x}$  for some matrix A. What's A?

6. **[12 points]** Find three vectors  $\mathbf{u}_1$ ,  $\mathbf{u}_2$ , and  $\mathbf{u}_3$  such that each of the pairs  $\{\mathbf{u}_1, \mathbf{u}_2\}$ ,  $\{\mathbf{u}_1, \mathbf{u}_3\}$ , and  $\{\mathbf{u}_2, \mathbf{u}_3\}$  are linearly independent, but  $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$  are linearly **dependent**.

7. **[10 points]** Let  $T\left(\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 4\\x_1 + x_2 \end{bmatrix}$ . Is this a linear transformation? Why or why not?

8. [3 points per part] Here, I bought you this linear transformation:

$$T(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{x}$$

Answer the following questions. Explain your reasoning!

- (a) What's the domain of *T*?
- (b) What's the codomain of *T*?
- (c) Is *T* one-to-one?
- (d) Is T onto?