Math 308 L - Spring 2017 Midterm Exam Number One April 19, 2017

Name: \qquad
Signature:

Student ID no. : \qquad
Section: \qquad

1	15	
2	12	
3	14	
4	15	
5	10	
6	12	
7	10	
8	12	
Total	100	

- This exam consists of EIGHT problems on FIVE pages, including this cover sheet.
- Show all work for full credit.
- You may use a scientific, non-graphing, non-algebraic calculator during this exam. Other calculators and electronic device are not permitted.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- Draw a box around your final answer to each problem.
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 50 minutes to complete the exam.

1. [$\mathbf{1 5}$ points] Below is a traffic diagram of three intersections.

Find the general solution for $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.

2. [12 points] Write the following matrix in reduced echelon form. (Found a shortcut? Great! But please explain it.)
$\left[\begin{array}{rrrrr}1 & 3 & 5 & -9 & 2 \\ 2 & 12 & 4 & 1 & 0 \\ 0 & -2 & 1 & 3 & 9 \\ 0 & 0 & 2 & -6 & 5 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$
3. [14 points] Can you write the vector $\left[\begin{array}{c}-4 \\ 5 \\ 5\end{array}\right]$ as a linear combination of $\left[\begin{array}{c}6 \\ 3 \\ 10\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 1 \\ 5\end{array}\right]$?
4. [15 points] Here are four vectors: $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ z_{1}\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ z_{2}\end{array}\right]$.
(a) For what values of z_{1} and z_{2} do these vectors span \mathbb{R}^{3} ?
(b) For what values of z_{1} and z_{2} are these vectors linearly independent?
5. [10 points] Below on the left is a picture of Victor, a humble unit square chilling in \mathbb{R}^{2}.

One day, a witch cursed him with a linear transformation, turning him into the parallelogram on the right!

The witch's spell was formed by applying the function $T(\mathbf{x})=A \mathbf{x}$ for some matrix A. What's A ?
6. [12 points] Find three vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$, and \mathbf{u}_{3} such that each of the pairs $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\},\left\{\mathbf{u}_{1}, \mathbf{u}_{3}\right\}$, and $\left\{\mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ are linearly independent, but $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ are linearly dependent.
7. [10 points] Let $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-4 \\ x_{1}+x_{2}\end{array}\right]$. Is this a linear transformation? Why or why not?
8. [3 points per part] Here, I bought you this linear transformation:

$$
T(\mathbf{x})=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \mathbf{x}
$$

Answer the following questions. Explain your reasoning!
(a) What's the domain of T ?
(b) What's the codomain of T ?
(c) Is T one-to-one?
(d) Is T onto?

