The Cantor-Berntein Theorem say that if there exists an injective function $f: A \rightarrow B$ and an injective function $g: B \rightarrow A$, then A and B are equinumerous.

It's a cool theorem! Perhaps one day you will see a proof. For now, you should feel free to use it on this assignment.

Also! I used $\|S\|$ for the cardinality of S in class the other day, but your textbook uses $|S|$, so let's do that instead. (It's probably more common anyway.)

1. Let S be the open interval of real numbers $(0,1)$. Prove that $|S|=|\mathbb{R}|$.
2. Let S be the closed interval $[0,1]$, and T the open interval $(0,1)$. Prove that $|S|=|T|$.
3. Let S be the set of all finite sets of natural numbers. (For example, $\{2,5,17,200\} \in S$, but $\{n \in \mathbb{N}: n$ is even $\} \notin S$.)

Prove that $|S|=|\mathbb{N}|$.
4. Let F_{n} be the nth Fibonacci number, with $F_{0}=F_{1}=1$, and $F_{n+1}=F_{n-1}+F_{n}$ for $n \geq 1$. Prove that

$$
\sum_{i=0}^{n} F_{i}=F_{n+2}-1
$$

5. Use induction to prove the sum of cubes formula:

$$
\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Also, fun fact, did you know that you can prove this with a picture? It looks like this:

