1. Suppose A is a nonempty set and R is a relation with the property that for all $a \in A$, there exists a $b \in A$ such that $a R b$. Prove that if R is symmetric and transitive, then R is an equivalence relation.
2. How many equivalence relations on the set $\{a, b, c\}$ are there? List them all.
3. Is it possible for an equivalence relation to be a function? If so, under what conditions? If not, prove it.
4. Determine whether each of the following relations on \mathbb{Z} is a partial ordering. (Prove all your answers.)
(a) $R=\left\{(a, b): a^{2} \leq b^{2}\right\}$
(b) $R=\{(a, b): 2 a<b\}$
(c) $R=\{(a, b): \sin (a) \leq \sin (b)\}$
(On part (c), you may use things you know about the function $\sin (x)$, even though we haven't talked about them in class.)
5. Give an example of functions $f: A \rightarrow B$ and $g: B \rightarrow C$ such that f and g are not bijections, but $g \circ f$ is a bijection.
6. Recall that \mathbb{R} is the set of real numbers. Let $f: \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ be the function defined by

$$
f(x)=\{z \in \mathbb{R}:|z| \leq x\} .
$$

(a) Is f injective?
(b) Is f surjective?

