1. Let $A=\{n \in \mathbb{Z}: 18 \mid n\}, B=\{n \in \mathbb{Z}: 2 \mid n\}$, and $C=\{n \in \mathbb{Z}: 3 \mid n\}$. Prove: $A \subseteq B \cap C$.
2. Let $A=\{n \in \mathbb{Z}: n=4 k+1$ for some $k \in \mathbb{Z}\}, B=\{n \in \mathbb{Z}: n=4 k-3$ for some $k \in \mathbb{Z}\}$.

Prove that $A=B$.
3. Give an example of a set S and an element $x \in S$ such that $x \subseteq S$.
4. Suppose A, B, and C are sets. Prove each of the following:
(a) $A \backslash(A \cap B)=A \backslash B$.
(b) $A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)$.
(c) $(A \backslash C) \cap(B \backslash C)=(A \cap B) \backslash C$.
5. Suppose A, B, and C are sets. Prove that if $A \cup C \subseteq B \cup C$, then $A \backslash C \subseteq B$.
6. Suppose A and B are sets. Identify the following statements as true or false. If the statement is true (for all A and B), prove it. If it's false, give a counterexample.
(a) $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
(b) $\mathcal{P}(A \cup B)=\mathcal{P}(A) \cup \mathcal{P}(B)$.

