1. Suppose a and b are integers. Prove each of the following:
(a) If a and b are both odd, then $a+b$ is even.
(b) If a is even and b is odd, then $a+b$ is odd.
(c) If $a+b$ is odd, then a and b have opposite parity.
2. Suppose a and b are negative integers. Prove that, if $a<b$, then $a^{2}>b^{2}$.
3. Suppose a and b are positive integers. Prove that, if $a \mid b$, then $a \leq b$.
4. Suppose $a>0$ and $b \geq 0$ are integers such that $a \mid b$. Prove that, if $b<a$, then $b=0$. (Typo corrected. This previously said $a=0$.)
5. Suppose a and b are integers. Prove that $a b+a+b$ is even if and only if both a and b are even.
6. Suppose n is an integer. Prove that n^{2} is even if and only if $4 \mid n^{2}$.
