Math 125 E - Winter 2017 Midterm Exam Number Two February 23, 2017

Name: \qquad Student ID no. : \qquad

Signature: \qquad Section: \qquad

1	21
2	6
3	10
4	13
5	10
Total	60

- This exam consists of FIVE problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You may use a TI-30X IIS calculator during this exam. Other calculators and electronic devices are not permitted.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- Draw a box around your final answer to each problem.
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 80 minutes to complete the exam.

1. [7 points per part] Compute the following integrals.

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
& \int \sqrt{x} \ln (x) d x \overbrace{u=\ln (x)} \quad d v=\sqrt{x} d x \\
& d u=\frac{1}{x} d x \quad v=\frac{2 x^{3 / 2}}{3}
\end{aligned} \quad=\frac{2 x^{3 / 2} \ln (x)}{3}-\int \frac{2}{3} \sqrt{x} d x \\
& \\
& =\frac{2 x^{3 / 2} \ln (x)}{3}-\frac{4 x^{3 / 2}}{9}+C
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int \begin{aligned}
& \tan ^{5}(x) \sec ^{5}(x) d x=\int \tan ^{4}(x) \sec ^{4}(x) \sec (x)+\operatorname{an}(x) d x \\
&=\int\left(\sec ^{2}(x)-1\right)^{2} \sec ^{4}(x) \sec (x)+\operatorname{an}(x) d x \\
& u=\sec (x), \quad d u=\sec (x) \tan (x) d x \\
&=\int\left(u^{2}-1\right)^{2} u^{4} d u=\int\left(u^{8}-2 u^{6}+u^{4}\right) d u \\
&=\frac{u^{9}}{9}-\frac{2 u^{7}}{7}+\frac{u^{5}}{5}+C \\
&= \frac{\sec }{9}(x)-\frac{2 \sec ^{7}(x)}{7}+\frac{\sec ^{5}(x)}{5}+C
\end{aligned}
\end{aligned}
$$

Compute this one too.

$$
\begin{aligned}
& \text { (c) } \begin{aligned}
& \text { Compute this one too. } \\
& x \frac{x}{\sqrt{-x^{2}+2 x+3}} d x=\int \frac{x}{\sqrt{4-(x-1)^{2}}} d x=\int \frac{2 \sin \theta+1}{\sqrt{4-4 \sin ^{2} \theta}} 2 \cos \theta d \theta \\
& d x=2 \cos \theta d \theta \\
&=\int \frac{2 \sin \theta+1}{\sqrt{4 \cos ^{2} \theta}} 2 \cos \theta d \theta=\int(2 \sin \theta+1) d \theta=-2 \cos \theta+\theta \\
&=-\sqrt{4-(x-1)^{2}}+\arcsin \left(\frac{x-1}{2}\right)+C
\end{aligned}
\end{aligned}
$$

2. [6 points] Use Simpson's rule with $n=4$ to approximate the integral $\int_{1}^{3} \sqrt{\ln (x)} d x$. (Please leave your answer in exact form, rather than writing a decimal.)

$$
\frac{1}{6}\left(\sqrt{\sqrt{\ln (\sqrt[1]{1})}}+4 \sqrt{\ln \left(\frac{3}{2}\right)}+2 \sqrt{\ln (2)}+4 \sqrt{\ln \left(\frac{5}{2}\right)}+\sqrt{\ln (3)}\right)
$$

3. [10 points] The bottom half (3 meters) of a tank is filled with water, as shown in the picture. The tank is a triangular prism with a vertical altitude of 6 meters, a width (along the base of the triangle) of 4 meters, and a length (perpendicular to the bases) of 5 meters. Find the amount of work (in Joules) needed to pump the water up out of the tank.
Use $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for g, and $1000 \mathrm{~kg} / \mathrm{m}^{3}$ for the density of water.
 thin slice ar height y. By similar triangles, its denarius are $\frac{2}{3} y \times 5$.
And it must be pumped up $6-y$ meters, so:

4. Let R be the region in the $x y$-plane bounded by $y=0$ and $y=\sin \left(x^{2}\right)$ between $x=0$ and $x=\frac{\sqrt{\pi}}{2}$.
(a) [8 points] Compute the volume of the solid formed by revolving R around the y-axis.

$$
\begin{aligned}
& \text { Shell method! } \\
& V=\int_{0}^{\frac{\sqrt{\pi}}{2}} 2 \pi x \sin \left(x^{2}\right) d x \\
& u=x^{2} d u=2 x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{4}} \pi \sin (u) d u \\
& =-\pi \cos (u)]_{0}^{\frac{\pi}{4}}
\end{aligned}
$$

$$
=-\pi \cos \left(\frac{\pi}{4}\right)+\pi \cos (0)
$$

$$
=\pi\left(1-\frac{\sqrt{2}}{2}\right)
$$

(b) [5 points] Set up, but do not evaluate, an integral for the volume of the solid formed by revolving R around the line $y=-1$.

5. [10 points] Find the average value of $f(x)=\frac{8 x^{4}-12 x^{3}+x^{2}-3 x-2}{x^{3}-x^{2}}$ on the interval [2,5].

$$
\begin{aligned}
& \frac{1}{5-2} \int_{2}^{5} \frac{8 x^{4}-12 x^{3}+x^{2}-3 x-2}{x^{3}-x^{2}} d x \\
& =\frac{1}{3} \int_{2}^{5}\left(8 x-4+\frac{-3 x^{2}-3 x-2}{x^{3}-x^{2}}\right) d x \\
& =\frac{1}{3} \int_{2}^{5}\left(8 x-4+\frac{-3 x^{2}-3 x-2}{x^{2}(x-1)}\right) d x \\
& =\frac{1}{3} \int_{2}^{5}\left(8 x-4+\frac{5 x}{x^{x}}+\frac{2}{x^{2}}+\frac{-8}{x-1}\right) d x \\
& \left.\left.=\frac{1}{3}\left(\left.4 x^{2}-4 x+5 \ln |x|-\frac{2}{x}-8 \ln \right\rvert\, x-1\right)\right)\right]_{2}^{5} \\
& =\frac{1}{3}\left(\left(100-20+5 \ln (5)-\frac{2}{5}-8 \ln (4)\right)\right. \\
& -(16-8+51 .(2)-1)) \\
& =\frac{\left.73-\frac{2}{5}+5 \ln \left(\frac{5}{2}\right)-8 \ln (4)\right)}{3} \\
& \begin{array}{r}
x^{3}-x^{2} \begin{array}{r}
8 x-4 \\
-\left(8 x^{4}-12 x^{3}+x^{2}-3 x-2\right. \\
\left.-4 x^{3}\right) \\
-\left(-4 x^{3}+4 x^{2}-3 x-2\right)
\end{array}
\end{array} \\
& -3 x^{2}-3 x-2 \\
& \text { This isn't part of the exam. It's just a free puzzle. } \\
& \frac{-3 x^{2}-3 x-2}{x^{2}(x-1)}=\frac{A x+B}{x^{2}}+\frac{C}{x-1} \\
& \left(\begin{array}{l}
\left(\begin{array}{l}
-3 x^{2}-3 x-2=(A x+B)(x-1)+C x^{2} \\
x=1:-8=C
\end{array}\right. \\
x=0:-2=-B, B=2 \\
x=-1:-2=2 A-2 B+C, A=5
\end{array}\right.
\end{aligned}
$$

Place the digits 1-6 in the grid so that each digit appears once in every row and column.
A $>$ between two digits indicates which one is greater.
A circled number between two digits indicates their difference.

