Math 125 D - Winter 2017 Midterm Exam Number One January 26, 2017

Name: \qquad Student ID no. : \qquad

Signature:

\qquad Section: \qquad

1	15	
2	11	
3	6	
4	6	
5	10	
6	12	
Total	60	

- This exam consists of SIX problems on SIX pages, including this cover sheet.
- Show all work for full credit.
- You may use a TI-30X IIS calculator during this exam. Other calculators and electronic device are not permitted.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- Draw a box around your final answer to each problem.
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 80 minutes to complete the exam.

1. [5 points per part] Compute the indefinite integrals.

$$
\begin{aligned}
& \text { (a) } \int \frac{2-x^{3}}{x} d x \\
& =\int\left(\frac{2}{x}-x^{2}\right) d x=2 \ln |x|-\frac{1}{3} x^{3}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \int\left(\pi^{x}+\frac{3}{\sqrt{1-4 x^{2}}}\right) d x \\
& =\frac{\pi^{x}}{\ln (\pi)}+\frac{1}{2} \int \frac{2 \cdot 3}{\sqrt{1-4 x^{2}}} d x=\frac{\pi^{x}}{\ln (\pi)}+\frac{3}{2} \int \frac{d u}{\sqrt{1-u^{2}}} \\
& \begin{array}{l}
u=2 x \\
d u=2 d x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { (c) } \frac{1}{3} \int 3 x^{8} \sqrt[3]{x^{3}-1} d x \\
u=x^{3}-1 \\
d=3 x^{2} d x
\end{array}\right\}(u+1)^{2} \sqrt[3]{3} d u=\frac{1}{3} \int\left(u^{2}+2 u+1\right) u^{1 / 3} d u \\
& d u=3 x^{2} d x \\
& \begin{array}{ll}
d u=3 x^{2} d x \\
x^{6}=(u+1)^{2}
\end{array} \quad=\frac{1}{3} \int\left(u^{7 / 3}+2 u^{4 / 3}+u^{1 / 3}\right) d u \\
& =\frac{1}{3}\left(\frac{3 u^{10 / 3}}{10}+\frac{6 u^{7 / 3}}{7}+\frac{3 u^{4 / 3}}{4}\right)+C \\
& =\frac{\left(x^{3}-1\right)^{10 / 3}}{10}+\frac{2\left(x^{3}-1\right)^{7 / 3}}{7}+\frac{\left(x^{3}-1\right)^{4 / 3}}{4}+C
\end{aligned}
$$

2. [11 points] Fungo is running along the number line.

At time $t=0$, his velocity is $-\sqrt{3} \mathrm{ft} / \mathrm{s}$.
After t seconds, his acceleration is $a(t)=\sec ^{2}\left(\frac{t}{3}\right) \mathrm{ft} / \mathrm{s}^{2}$.
From time $t=0$ to $t=4$, what is the total distance traveled by Fungo?
(Leave your answer in exact form. Please don't convert to decimal.)

$$
\begin{aligned}
& V(t)=\int \sec ^{2}\left(\frac{t}{3}\right) d t=\int 3 \sec ^{2}(u) d u=3 \tan (u)+C \\
& u=\frac{t}{3} \quad v(t)=3 \tan \left(\frac{t}{3}\right)+C \\
& d u=\frac{1}{3} d t \\
& v(0)=3 \tan (0)+C=-\sqrt{3} \\
& \sqrt{ } C=-\sqrt{3} \\
& V(t)=3 \tan \left(\frac{t}{3}\right)-\sqrt{3}
\end{aligned}
$$

When does he turn around? $3 \tan \left(\frac{t}{3}\right)-\sqrt{3}=0 \rightarrow \operatorname{tar}\left(\frac{t}{3}\right)=\frac{\sqrt{3}}{3}$

$$
\rightarrow \frac{t}{3}=\frac{\pi}{6} \rightarrow t=\frac{\pi}{2}
$$

$$
\begin{aligned}
& \text { Position: } s(t)=\int\left(3 \tan \left(\frac{t}{3}\right)-\sqrt{3}\right) d t=\int 9 \tan (u) d u-\sqrt{3} t+C \\
& n=\frac{\uparrow_{t}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { distance) } \\
& d u=\frac{1}{3} d t \\
& s(4)=9 \ln \left(\sec \left(\frac{4}{3}\right)\right)-4 \sqrt{3}
\end{aligned}
$$

So, distance $=\left(\frac{\sqrt{3} \pi}{2}-9 \ln \left(\frac{2}{\sqrt{3}}\right)+\left(9 \ln \left(\sec \left(\frac{4}{3}\right)\right)-4 \sqrt{3}-\left(9 \ln \left(\frac{2}{\sqrt{3}}\right)-\frac{\sqrt{3} \pi}{2}\right)\right)\right.$
3. [6 points] Compute the following integral.
4. [6 points] Let $h(x)=\int_{\ln (x)}^{3 x} \cos \left(t^{2}+1\right) d t$. Find $h^{\prime}(5)$.

Let $g(x)=\int_{0}^{x} \cos \left(t^{2}+1\right) d t$. So $g^{\prime}(x)=\cos \left(x^{2}+1\right)$
Now, $h(x)=g(3 x)-g(\ln (x))$,

$$
\text { so } h^{\prime}(x)=3 g^{\prime}(3 x)-\frac{1}{x} g^{\prime}(\ln (x)
$$

$$
h^{\prime}(x)=3 \cos \left(9 x^{2}+1\right)-\frac{1}{x} \cos \left((\ln (x))^{2}+1\right)
$$

So $h^{\prime}(5)=3 \cos (226)-\frac{1}{5} \cos \left((\ln (5))^{2}+1\right)$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \frac{3}{n} \sin \left(2+\frac{3 i}{n}\right) \\
& \Delta x=\frac{b-a}{n}=\frac{3}{n} \\
& x_{i}=a+i \Delta x=2+\frac{3 i}{n} \\
& a=2, b=5, f(x)=\sin (x) \\
& \begin{aligned}
& \\
& \downarrow \\
& \int_{2}^{5} \sin (x) d x
\end{aligned} \\
& =-\cos (x)]_{2}^{5}=\cos (2)-\cos (5)
\end{aligned}
$$

5. [10 points] Let R be the region bounded by the curves $y=-x^{2}+4 x$ and $y=a x$. Find a constant $a<4$ so that the area of R is 15 .

(turns out the slope is negative, but ok to draw it the other way.)

Area is
$\int_{0}^{4-a}\left(-x^{2}+4 x-a x\right) d x$

$$
(4-a)^{3}=90
$$

$$
4-a=\sqrt[3]{90}
$$

$$
a=4-\sqrt[3]{90}
$$

6. [4 points per part] Behold: a graph!

$$
f(x)
$$

Use this graph to answer the following questions.
(a) Compute $\int_{-5}^{-1} f(x) d x$.

If the graph were one unit higher, it would be easy:

$$
\text { So } \int_{-5}^{-1} f(x) d x=\frac{9 \pi}{4}+1-4=\frac{9 \pi}{4}-3
$$

(b) Compute $\int_{-1}^{1} f(1-3 x) d x=\frac{-1}{3} \int_{4}^{-2} f(u) d u=\frac{1}{3} \int_{-2}^{4} f(u) d u=\frac{1}{3}(12)=4$

$$
\begin{aligned}
u & =1-3 x \\
d u & =-3 d x
\end{aligned}
$$

(c) Consider the integral $\int_{4}^{8} f(x) d x$. Which approximation is larger: R_{4} or R_{8} ? Explain. $R_{4} \& R_{8}$ are both underestimates, since f is decreasing, bet R_{8} is closer to the actual value. So R_{8} is greater.
(Or, draw rectangles:

