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• This exam consists of SIX problems on SIX pages, including this cover sheet.

• Show all work for full credit. Show no work for zero credit.

• You do not need to simplify your answers.

• If you use a trial-and-error or guess-and-check method when a more rigorous method is

available, you will not receive full credit.

• Write all of your work on the exam itself. If you use the back of the page, please indicate

that you have done so!

• You may use a TI-30X IIS on this exam. No other electronic devices are allowed.

• You may use one hand-written double-sided 8.5” by 11” page of notes.

• You have 50 minutes to complete the exam.
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1. [12 points] A particle has an initial velocity of h0, 0, 0i, and after t seconds its acceleration

is given by a(t) = h6t2,�3, 9

p
ti.

Compute the tangential and normal components of acceleration after one second.

(Please specify which is which!)
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2. Consider the surface 4x

2 � 2xy + y

2
z � y

3
= 44.

(a) [10 points] Find the equation for the tangent plane to this surface at the point (3, 4, 6).

(b) [2 points] Use linearization to approximate a constant b such that the point (2.98, b, 5.96)

lies on the surface.

⇐fFYI5÷st±€.a¥x¥¥D} ( treating × as constant ) :
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3. f(x, y) is a smooth continuous function whose level curves are shown below.
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Use this graph to answer the following questions. You do not need to show work.

(a) [1 point each] At the point P , indicate whether the following partial derivatives are

positive, negative, or zero. (Circle your answers.)
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: Positive Negative Zero

(b) [2 points] f(x, y) has three critical points. Estimate their coordinates, and classify

them as local maxima, local minima, or saddlepoints.

(c) [2 points] Consider the double integral

Z 8

3

Z 7

6

f(x, y) dx dy. Which of the following

correctly estimates that integral?

(Circle one.)

Between 0 and 20. Between 20 and 40. Between 40 and 60.

Between 60 and 80. Between 80 and 100. Greater than 100.

p
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•
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(5,7-5) & ( 5,25 ) : local minima ( 5,5) : saddlepoint
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4. [13 points] Compute the absolute maximum and minimum values of the function

f(x, y) = e

x+y

(x

2
+ y

2
)

on the disk of radius 2 centered at the origin (pictured to the right).
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first
,

where do the partial derivatives =O ? spp )

f×(x,y)=e×%3+yD+e×+Y2D

=e×t%2+2xtyD=Ofy(x,y)=e*Ki+y
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If ×2+y2+2x=x2+y2+2y ,

then x=y .

( 0,0 )

So x2+x2+2x=O - 2×(1+1)=0 ( l
,
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%¥
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big ( top . right corner )
,

Small if Xty is small ( lower - left )

Check !
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5. [8 points] Compute the following integral.

Z 9

0

Z 3

p
x

cos(⇡y

3
) dy dx

6. [7 points] Consider the rose r = sin(2✓) � cos(2✓), shown below. Set up (but do not

evaluate) an integral to find the area of one petal of the rose.
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