Math 126 D - Spring 2015 Midterm Exam Number Two May 19, 2015

Name: \qquad Student ID no. : \qquad
\qquad Section: \qquad

1	15	
2	12	
3	15	
4	18	
Total	60	

- This exam consists of FOUR problems on FIVE pages, including this cover sheet.
- Show all work for full credit. Show no work for zero credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- Write all of your work on the exam itself. If you use the back of the page, please indicate that you have done so!
- You may use a scientific, non-programmable, non-graphing calculator.
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 50 minutes to complete the exam.

1. A particle begins at the origin at time $t=0$. At time $t=1$, its velocity vector is $\langle 0,4,4\rangle$. After t seconds, its acceleration vector is $\mathbf{a}(t)=\left\langle-4, \frac{-16}{(t+1)^{3}}, \pi \sin (\pi t)\right\rangle$.
(a) [10 points] Write a vector function $\mathbf{r}(t)$ for the particle's position after t seconds.

If $\vec{a}(t)=\left\langle-4, \frac{-16}{(t+1)^{3}}, \pi \sin (\pi t)\right\rangle$, then antidifferentiate to get:

$$
\vec{V}(t)=\left\langle-4 t+C_{1} \frac{8}{(t+1)^{2}}+C_{2},-\cos (\pi t)+C_{3}\right\rangle
$$

In order to get $\vec{V}(1)=\langle 0,4,4\rangle$ we have $C_{1}=4, C_{2}=2, C_{3}=3$:
$\vec{V}(t)=\left\langle-4 t+4, \frac{8}{(t+1)^{2}}+2,-\cos (\pi t)+3\right\rangle$. Antidifferentiate again:

$$
\stackrel{\rightharpoonup}{r}(t)=\left\langle-2 t^{2}+4 t+C_{4}, \frac{-8}{t+1}+2 t+C_{5}, \frac{-1}{\pi} \sin (\pi t)+3 t+C_{6}\right\rangle
$$

In order to have $\vec{r}(0)=0$, we get $C_{4}=0, C_{5}=8, C_{6}=0$:

$$
\vec{r}(t)=\left\langle-2 t^{2}+4 t, \frac{-8}{t+1}+2 t+8, \frac{-1}{\pi} \sin (\pi t)+3 t\right\rangle
$$

(b) [5 points] Compute the curvature of the particle's path at time $t=3$.

$$
\begin{gathered}
K=\frac{\left|\vec{r}^{\prime}(3) \times \vec{r}^{\prime \prime}(3)\right|}{\left|\vec{r}^{\prime}(3)\right|^{3}} \\
\vec{r}^{\prime}(3)=\langle-8,2.5,4\rangle \quad\left|\vec{r}^{\prime}(3)\right|=\sqrt{(-8)^{2}+(2.5)^{2}+(4)^{2}} \\
\vec{r}^{\prime \prime}(3)=\langle-4,-0.25,0\rangle \\
\vec{r}^{\prime}(3) \times \vec{r}^{\prime \prime}(3)=\langle 1,-16,12\rangle \quad \vec{r}^{\prime}(3) \times \vec{r}^{\prime \prime}(3) \mid=\sqrt{(1)^{2}+(-16)^{2}+(12)^{2}} \\
K=\frac{\sqrt{1^{2}+16^{2}+12^{2}}}{\left(\sqrt{8^{2}+2.5^{2}+4^{2}}\right)^{3}} \approx 0.025
\end{gathered}
$$

2. A right square pyramid with base side length x and height y has surface area given by the following formula:

$$
f(x, y)=x^{2}+x \sqrt{x^{2}+4 y^{2}}
$$

(a) [8 points] Give the equation of the tangent plane to $z=f(x, y)$ at the point $(8,3,144)$.
$f_{x}(x, y)=2 x+\sqrt{x^{2}+4 y^{2}}+\frac{x^{2}}{\sqrt{x^{2}+4 y^{2}}}$

$f_{y}(x, y)=\frac{4 x y}{\sqrt{x^{2}+4 y^{2}}}$

$$
z-144=32.4(x-8)+9.6(y-3)
$$

(b) [4 points] A right square pyramid has a surface area of 144.402 and a height of 2.998.

Use linearization to estimate the side length of the base.

$$
\begin{aligned}
& \text { Pets use the tangent plane from part (a)! } \\
& \text { Plug in } z=144.402, \quad y=2.998 \text { : } \\
& \begin{array}{c}
144.402-144=32.4(x-8)+9.6(2.998-3) \\
\\
\quad \text { solve for } x . \\
x=8.013
\end{array}
\end{aligned}
$$

3. [15 points] Let $z=f(x, y)=3 e^{x}\left(x-x y^{2}\right)$.

Find all critical points of f. Classify them as local minima, local maxima, or saddle points.
Please list the (x, y, z) coordinates for each solution.

$$
\begin{aligned}
& f_{x}(x, y)=3 e^{x}\left(x-x y^{2}\right)+3 e^{x}\left(1-y^{2}\right) \\
& f_{x}(x, y)=3 e^{x}\left(x-x y^{2}+1-y^{2}\right) \\
& \left.f_{y}(x, y)=3 e^{x(-2 x y}\right) \\
& 3 e^{x}(-2 x y)=0 \Longrightarrow x=0 \quad \text { or } \quad y=0 \\
& 3\left(1-y^{2}\right)=0 \quad 3 e^{x}(x+1)=0 \\
& \Downarrow \quad \Downarrow \\
& y= \pm 1 \\
& x=-1 \\
& \text { ait: prs: }(0,1, \underbrace{\left(-1,0, \frac{-3}{e}\right)}_{\text {Find } \left.D=f_{x x}(x, y) f_{y y}(x, y)\right)[(0,-10)} \\
& f_{x x}(x, y)=3 e^{x}\left(x-x y^{2}+2-2 y^{2}\right) \\
& f_{y y}(x, y)=3 e^{x}(-2 x) \\
& f_{x y}(x, y)=3 e^{x}(-2 x y-2 y) \\
& (0,1,0): D=0.0-(-6)^{2}<0,(0,0) \text { is a saddlepaint } \\
& \left.(0,-1,0): D=0.0-(6)^{2}<0\right)(0,-1,0) \text { is a saddlephint } \\
& \left(-1,0, \frac{-3}{e}\right): D=\left(\frac{3}{e}\right) \cdot\left(\frac{6}{e}\right)-0^{2}>0, f_{D x}>0,50\left(\begin{array}{l}
\left(-1,0, \frac{-3}{e}\right) \text { is a } \\
\text { local min }
\end{array}\right.
\end{aligned}
$$

4. [6 points each] Compute each double integral.

(b) $\int_{0}^{1} \int_{0}^{\cos ^{-1}(y)} \sqrt{6 \sin (x)} d x d y$

Yuck! Let's draw and change the order of variables:

(c) $\int_{-\sqrt{3}}^{0} \int_{0}^{\sqrt{3-y^{2}}} \frac{y}{1+x^{2}+y^{2}} d x d y \quad x=\sqrt{3-y^{2}} \quad$ Possibly useful hint: $a^{2}=\left(a^{2}+1\right)-1$

$$
\frac{y}{1+x^{2}+y^{2}} \rightarrow \frac{r \sin (\theta)}{1+r^{2}}
$$

$$
=\int_{-\frac{\pi}{2}}^{0}[(r-\arctan (r)) \sin (\theta)]_{0}^{\sqrt{3}} d \theta=\int_{-\frac{\pi}{2}}^{0}\left(\sqrt{3}-\frac{\pi}{3}\right) \sin \theta d \theta=\frac{\pi}{3}-\sqrt{3}
$$

