Due: Thu Apr 9 2015 11:00 PM PDT

Question

1 2 3 4

.....

1. Question Details

SCalcET7 12.4.002. [1785454]

Find the cross product $\mathbf{a} \times \mathbf{b}$.

$$\mathbf{a} = \langle 1, 1, -1 \rangle, \quad \mathbf{b} = \langle 3, 8, 10 \rangle$$

Verify that it is orthogonal to both \boldsymbol{a} and $\boldsymbol{b}.$

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \square$$

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} =$$

2. Question Details

SCalcET7 12.4.004. [1864785]

Find the cross product $\mathbf{a} \times \mathbf{b}$.

$$a = j + \frac{9}{k}, \quad b = \frac{4}{i} - j + \frac{3}{k}$$

Verify that it is orthogonal to both **a** and **b**.

$$(a \times b) \cdot a =$$

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} =$$

3. Question Details

SCalcET7 12.4.008. [1785415]

If $\mathbf{a} = \mathbf{i} - 4\mathbf{k}$ and $\mathbf{b} = \mathbf{j} + \mathbf{k}$, find $\mathbf{a} \times \mathbf{b}$.

SCalcET7 12.4.013. [1815434]

State whether each expression is meaningful. If not, explain why. If so, state whether it is a vector or a scalar.

- (a) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$
 - The expression is meaningful. It is a vector.
 - The expression is meaningful. It is a scalar.
 - The expression is meaningless. The cross product is defined only for two vectors.
 - The expression is meaningless. The dot product is defined only for two vectors.
- (b) $\mathbf{a} \times (\mathbf{b} \cdot \mathbf{c})$
 - The expression is meaningful. It is a vector.
 - The expression is meaningful. It is a scalar.
 - The expression is meaningless. The cross product is defined only for two vectors.
 - The expression is meaningless. The dot product is defined only for two vectors.
- (c) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$
 - The expression is meaningful. It is a vector.
 - The expression is meaningful. It is a scalar.
 - The expression is meaningless. The cross product is defined only for two vectors.
 - The expression is meaningless. The dot product is defined only for two vectors.
- (d) $\mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c})$
 - The expression is meaningful. It is a vector.
 - The expression is meaningful. It is a scalar.
 - The expression is meaningless. The cross product is defined only for two vectors.
 - The expression is meaningless. The dot product is defined only for two vectors.
- (e) $(\mathbf{a} \cdot \mathbf{b}) \times (\mathbf{c} \cdot \mathbf{d})$
 - The expression is meaningful. It is a vector.
 - The expression is meaningful. It is a scalar.
 - The expression is meaningless. The cross product is defined only for two vectors.
 - The expression is meaningless. The dot product is defined only for two vectors.
- (f) $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d})$
 - The expression is meaningful. It is a vector.
 - The expression is meaningful. It is a scalar.
 - The expression is meaningless. The cross product is defined only for two vectors.
 - The expression is meaningless. The dot product is defined only for two vectors.

Assignment Details