Math 126 DFEPs

Spring 2015
The deal: every day I'll post an exam-like problem at the start of class, along with the answer to the problem from the previous class. Please attempt these problems!

DFEP \#1: Friday, April 10th.

(a) Give the equation of a plane containing the line $\frac{x-2}{4}=\frac{y}{-2}=\frac{z+6}{3}$ and the point ($6,1,5$).
(b) Find the intersection of this plane with the line $\frac{x+1}{-6}=\frac{y-5}{2}=z-7$.

DFEP \#1 Solution:

(a) We want a plane through the line $\frac{x-2}{4}=\frac{y}{-2}=\frac{z+6}{3}$ and the point $(6,1,5)$. Certainly this plane contains the line's direction vector $\langle 4,-2,3\rangle$. It also contains the points $(2,0,-6)$ and $(6,1,5)$, which means it contains the vector $\langle 4,1,11\rangle$. So to find the normal vector, we can take the cross product $\langle 4,-2,3\rangle \times\langle 4,1,11\rangle$ to get $\langle-25,-32,12\rangle$. The plane with normal vector $\langle-25,-32,12\rangle$ through the point $(6,1,5)$ has equation

$$
-25 x-32 y+12 z=-25(6)-32(1)+12(5)
$$

or

$$
-25 x-32 y+12 z=-122
$$

(b) Let's write that line in parametric form: $x=-1-6 t, y=5+2 t, z=7+t$. Plugging that into the equation of the plane yields

$$
-25(-1-6 t)-32(5+2 t)+12(7+t)=-122
$$

which we can solve to get $t=-71 / 98 \approx-0.7245$, so the point of intersection is $(x, y, z)=(3.347,3.551,6.276)$.

DFEP \#2: Monday, April 13th.

Suppose $\mathbf{a}=\langle-1,8,4\rangle$. Find a vector \mathbf{b} so that:

- The angle between \mathbf{a} and \mathbf{b} is 60°,
- \mathbf{b} is perpendicular to \mathbf{k}, and
- $\|\mathbf{b}\|=4$.

DFEP \#2 Solution:

Let's say that $\mathbf{b}=\langle x, y, z\rangle$. We know that $\mathbf{b} \cdot \mathbf{k}=0$, so $z=0$.
We also know that $\mathbf{a} \cdot \mathbf{b}=-x+8 y+4 z=-x+8 y$. But on the other hand, $\mathbf{a} \cdot \mathbf{b}=$ $\|\mathbf{a}\| \cdot\|\mathbf{b}\| \cos \left(60^{\circ}\right)$. Since $\|\mathbf{a}\|=9$ and $\|\mathbf{b}\|=4$, that means $-x+8 y=18$, or $x=8 y-18$.
Finally, since $\|\mathbf{b}\|=4$, we know that $x^{2}+y^{2}=16$, so $(8 y-18)^{2}+y^{2}=16$, which simplifies to $65 y^{2}-288 y+308=0$.
Solving that tells us that $y=\frac{288 \pm \sqrt{288^{2}-4 \cdot 65 \cdot 308}}{130} \approx 2.627$ or 1.804 .
And since $x=8 y-18$, that means we have two possible answers:

$$
\mathbf{b}=\langle 3.016,2.627,0\rangle \quad \text { or } \quad \mathbf{b}=\langle-3.570,1.804,0\rangle
$$

DFEP \#3: Wednesday, April 15th:

Consider the vector function $\mathbf{r}=\left\langle t+1,2^{t}, 3 t+2 t^{2}\right\rangle$.
(a) Does the curve defined by \mathbf{r} intersect the following line? If so, where?

$$
\frac{x-15}{2}=y-10=8-z
$$

(b) Suppose \mathbf{r} intersects the surface $5 x^{2}+C y^{2}+2 z^{2}=1$ in the $y z$-plane. Solve for the constant C.
(c) Describe the surface from part (b). Your answer should be a short phrase.

DFEP \#3 Solution:

(a) We want to find the intersection of the vector functions $\left\langle t+1,2^{t}, 3 t+2 t^{2}\right\rangle$ and $\langle 15+2 s, 10+s, 8-s\rangle$. So we set their components equal:

$$
t+1=15+2 s \quad 2^{t}=10+s \quad 3 t+2 t^{2}=8-s
$$

Yikes, let's ignore that second equation for now. Solving the first and third gives a quadratic $4 t^{2}+7 t-30=0$, which factors as $(4 t+15)(t-2)=0$. So we have either $t=2, s=-6$ or $t=-15 / 4, s=-71 / 8$. Plugging those into the second equation, we have $t=2, s=-6$ as the only solution.
So where's the point? Plug t or s into the corresponding vector function to get $(3,4,14)$ as the intersection.
(b) Okay, $\mathbf{r}=\left\langle t+1,2^{t}, 3 t+2 t^{2}\right\rangle$ intersects the $y z$-plane when $x=0$, so $t=-1$, which is at the point $\left(0, \frac{1}{2},-1\right)$. Since this intersects the curve $5 x^{2}+C y^{2}+2 z^{2}=1$, we have $C\left(\frac{1}{2}\right)^{2}+2=1$, so $C=-4$.
(c) The curve $5 x^{2}-4 y^{2}+2 z^{2}=1$ is a hyperboloid of one sheet, centered around the y-axis.

DFEP \#4: Friday, April 17th.

Consider the curve defined by the vector function $\mathbf{r}=\left\langle t+6, t^{3}, e^{t^{2}-6 t+8}\right\rangle$.
(a) Find all points where the curve intersects the plane $z=1$.
(b) Find the (acute) angle between the curve and plane at each point from part (a).

DFEP \#4 Solution:

(a) The curve defined by $\left\langle t+6, t^{3}, e^{t^{2}-6 t+8}\right\rangle$ intersects $z=1$ when its z-component is 1 , which means that $e^{t^{2}-6 t+8}=1$. Therefore $t^{2}-6 t+8=0$, so $t=2$ or $t=4$.
To find the points of intersection, we plug $t=2$ and $t=4$ back into the vector function to get $(8,8,1)$ and $(10,64,1)$.
(b) We'll need to know the tangent vectors for the points from part (a). The derivative $\mathbf{r}^{\prime}(t)=\left\langle 1,3 t^{2},(2 t-6) e^{t^{2}-6 t+8}\right\rangle$.
At $t=2$, this is the vector $\langle 1,12,-2\rangle$, and at $t=4$ it's $\langle 1,48,2\rangle$.
To find the angle between the curve and the plane, we'll start by finding the angles between the normal vector and the tangent vector:
$\langle 1,12,-2\rangle \cdot\langle 0,0,1\rangle=\|\langle 1,12,-2\rangle\| \cdot 1 \cos (\theta)$, so $\theta=\cos ^{-1}(-2 / \sqrt{149}) \approx 99.43^{\circ}$.
But, wait, that's the angle between the curve and the normal vector. The angle between the curve and the plane is 90° less, or 9.43°.
A similar calculator for the other point gives 2.39°.

DFEP \#5: Monday, April 20th.

Consider the polar curve $r=2 \cos (\theta)-5$. (Give all answers in polar coordinates.)

1. Find all intersections of this curve with the line $x=3$.
2. Find all points on the curve where the tangent line is horizontal.

DFEP \#5 Solution:

(a) Okay, so we have the curve $r=2 \cos (\theta)-5$, and we want to know where $x=3$. But $x=r \cos (\theta)$, so $r \cos (\theta)=3$, which means $(2 \cos (\theta)-5) \cos (\theta)=3$.
Expanding that gives $2 \cos ^{2}(\theta)-5 \cos (\theta)-3=0$, which factors into $(2 \cos (\theta)+$ $1)(\cos (\theta)-3)=0$. Since $\cos (\theta)$ can never equal 3 , this means $\cos (\theta)=-1 / 2$, so $\theta=2 \pi / 3$ or $4 \pi / 3$.
At those values of θ, we get $r=2 \cos (\theta)-5=-6$. So $(x, y)=(r \cos (\theta), r \sin (\theta))=$ $(3,3 \sqrt{3})$ or $(3,-3 \sqrt{3})$.
(b) We want to know when the tangent line is horizontal. That tells us:

$$
\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)=0
$$

But $\frac{d r}{d \theta}=-2 \sin (\theta)$, so we want to solve:

$$
-2 \sin ^{2}(\theta)+2 \cos ^{2}(\theta)-5 \cos (\theta)=0
$$

which simplifies to

$$
4 \cos ^{2}(\theta)-5 \cos (\theta)-2=0
$$

which means

$$
\begin{gathered}
\cos (\theta)=\frac{5 \pm \sqrt{57}}{8} \\
\theta=\arccos \left(\frac{5-\sqrt{57}}{8}\right) \approx 1.895
\end{gathered}
$$

Okay, uh, maybe the algebra here is a little grosser than you'll see on an exam.

DFEP \#6: Friday, April 24th.

Give an equation for the normal plane to the following curve at the point $\left(27,5, \frac{1}{26}\right)$:

$$
x=2^{t}-t \quad y=t^{2}-4 t \quad z=\frac{1}{1+t^{2}}
$$

DFEP \#6 Solution:

We want the normal plane to $\left\langle 2^{t}-t, t^{2}-4 t, \frac{1}{1+t^{2}}\right\rangle$ at $\left(27,5, \frac{1}{26}\right)$, which is at $t=5$. So we just need to know the tangent vector at $t=5$, and that will give us the normal vector to the plane.
That tangent vector is $\left\langle\ln (2) 2^{t}-1,2 t-4, \frac{-2 t}{\left(1+t^{2}\right)^{2}}\right\rangle$, which at $t=5$ is:

$$
\left\langle 32 \ln (2)-1,6, \frac{-5}{338}\right\rangle
$$

So the normal plane is:

$$
(32 \ln (2)-1) x+6 y-\frac{5}{388} z=(32 \ln (2)-1) \cdot 27+30-\frac{5}{388 \cdot 26}
$$

DFEP \#7: Monday, April 27th.

Consider the vector function $\mathbf{r}(t)=\left\langle\arctan (t), 3 t^{2}-4 t+1, \ln \left(t^{2}\right)\right\rangle$.
Compute the curvature of $\mathbf{r}(t)$ when $t=1$.

DFEP \#7 Solution:

Recall that we can find κ by computing $\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$.
$\mathbf{r}(t)=\left\langle\arctan (t), 3 t^{2}-4 t+1, \ln \left(t^{2}\right)\right\rangle$.
$\mathbf{r}^{\prime}(t)=\left\langle\frac{1}{1+t^{2}}, 6 t-4, \frac{2}{t}\right\rangle$.
$\mathbf{r}^{\prime \prime}(t)=\left\langle\frac{-2 t}{\left(1+t^{2}\right)^{2}}, 6, \frac{-2}{t}\right\rangle$.
We want the curvature at $t=1$, so $\mathbf{r}^{\prime}(1)=\langle 0.5,2,2\rangle$, and $\mathbf{r}^{\prime \prime}(1)=\langle-0.5,6,-2\rangle$.
$\mathbf{r}^{\prime}(1) \times \mathbf{r}^{\prime \prime}(1)=\langle-16,0,4\rangle$, so $\left|\mathbf{r}^{\prime}(1) \times \mathbf{r}^{\prime \prime}(1)\right|=\sqrt{272}$, and $\left|\mathbf{r}^{\prime}(1)\right|=\sqrt{8.25}$.
So $\kappa=\frac{\sqrt{272}}{(\sqrt{8.25})^{3}} \approx 0.696$.

DFEP \#8: Wednesday, April 29th.

The position of a bee over time on the interval $[0, \infty)$ is given by the vector function $\mathbf{r}(t)=\left\langle\cos (\pi t), t^{4}-4 t^{3}+4 t^{2}, \sqrt{t}\right\rangle$. Compute the tangential and normal acceleration of the bee after $t=4$ seconds.

DFEP \#8 Solution:

We are given the position vector $\mathbf{r}=\left\langle\cos (\pi t), t^{4}-4 t^{3}+4 t^{2}, \sqrt{t}\right\rangle$ and we want tangential and normal acceleration after $t=4$ seconds.
First, we need $\mathbf{r}^{\prime}(t)=\left\langle-\pi \sin (\pi t), 4 t^{3}-12 t^{2}+8 t, 1 /(2 \sqrt{t})\right\rangle\left(\right.$ so $\left.\mathbf{r}^{\prime}(4)=\langle 0,96,1 / 4\rangle\right)$ as well as $\mathbf{r}^{\prime \prime}(t)=\left\langle-\pi^{2} \cos (\pi t), 12 t^{2}-24 t+8,-1 /\left(4 \sqrt{t^{3}}\right)\right\rangle\left(\right.$ so $\left.\mathbf{r}^{\prime \prime}(4)=\left\langle-\pi^{2}, 104,-1 / 32\right\rangle\right)$.
The usual formulas tell us a_{T} and a_{N} :

$$
a_{T}=\frac{r^{\prime}(4) \cdot r^{\prime \prime}(4)}{\left|r^{\prime}(4)\right|}=\frac{9983.99219}{\sqrt{96^{2}+(1 / 4)^{2}}} \approx 103.9996
$$

and

$$
a_{N}=\frac{\left|r^{\prime}(4) \times r^{\prime \prime}(4)\right|}{\left|r^{\prime}(4)\right|}=\frac{\left|\left\langle-29,-\pi^{2} / 4,96 \pi^{2}\right\rangle\right|}{\sqrt{96^{2}+(1 / 4)^{2}}} \approx 9.8742
$$

DFEP \#9: Friday, May 1st.

The force exerted on a 5 kg ball after t seconds, in Newtons, is given by the vector function $\mathbf{F}(t)=\left\langle 5 \cos (t) \sin (t), 10 e^{5 t}, 45 t^{2}\right\rangle$.

The initial velocity (in meters per second) and position (in meters) of the ball are the by the vectors $\mathbf{v}(0)=\langle 3,-2,6\rangle$ and $\mathbf{r}(0)=\langle 4,1,0\rangle$.
Compute the position of the ball $\mathbf{r}(t)$ (in meters) after t seconds.

DFEP \#9 Solution:

First, we compute the acceleration by dividing the force $\mathbf{F}(t)$ by the mass 5 to get

$$
\mathbf{a}(t)=\left\langle\cos (t) \sin (t), 2 e^{5 t}, 9 t^{2}\right\rangle
$$

Integrating once gives

$$
\mathbf{v}(t)=\left\langle\sin ^{2}(t)+C_{1}, \frac{2}{5} e^{5 t}+C_{2}, 3 t^{3}+C_{3}\right\rangle
$$

and since $\mathbf{v}(0)=\langle 3,-2,6\rangle$ we can solve for the constants to get

$$
\mathbf{v}(t)=\left\langle\sin ^{2}(t)+3, \frac{2}{5} e^{5 t}-\frac{12}{5}, 3 t^{3}+6\right\rangle
$$

Integrate again (using the half-angle formula to integrate $\sin ^{2}(t)$) and we have

$$
\mathbf{r}(t)=\left\langle\frac{1}{2} t-\frac{1}{4} \sin (2 t)+3 t+C_{4}, \frac{2}{25} e^{5 t}-\frac{12}{5} t+C_{5}, \frac{3}{4} t^{4}+6 t+C_{6}\right\rangle
$$

and, one more time, we can use $\mathbf{r}(0)=\langle 4,1,0\rangle$ to solve for the constants:

$$
\mathbf{r}(t)=\left\langle\frac{1}{2} t-\frac{1}{4} \sin (2 t)+3 t+4, \frac{2}{25} e^{5 t}-\frac{12}{5} t+\frac{23}{25}, \frac{3}{4} t^{4}+6 t\right\rangle
$$

DFEP \#10: Monday, May 4th.

Compute the all the partial derivatives (one for each variable) of the given functions:
(a) $f(x, y)=x^{2} y^{3}-x y+5 x^{3}$
(b) $g(x, y)=\frac{x^{2}+1}{x y+y^{2}}$
(c) $h(x, y, z)=\left(2+\arctan \left(x+y^{2}\right)\right)^{z}$

DFEP \#10 Solution:

I don't really have anything to say about this one. Here are some derivatives.
(a) $f_{x}(x, y)=2 x y^{3}-y+13 x^{2}$

$$
f_{y}(x, y)=3 x^{2} y^{2}-x
$$

(b) $g_{x}(x, y)=\frac{2 x\left(x y+y^{2}\right)-y\left(x^{2}+1\right)}{\left(x y+y^{2}\right)^{2}}$

$$
g_{y}(x, y)=\frac{-\left(x^{2}+1\right)(x+2 y)}{\left(x y+y^{2}\right)^{2}}
$$

(c) $h_{x}(x, y, z)=\frac{z\left(2+\arctan \left(x+y^{2}\right)\right)^{z-1}}{1+\left(x+y^{2}\right)^{2}}$

$$
\begin{aligned}
& h_{y}(x, y, z)=\frac{2 y z\left(2+\arctan \left(x+y^{2}\right)\right)^{z-1}}{1+\left(x+y^{2}\right)^{2}} \\
& h_{z}(x, y, z)=\left(2+\arctan \left(x+y^{2}\right)\right)^{z} \ln \left(2+\arctan \left(x+y^{2}\right)\right)
\end{aligned}
$$

DFEP \#11: Wednesday, May 6th.

Consider the surface $z=x^{3} e^{y}-8 \cos (y)+4 x \sin (y)$.
Let P be the point where this surface intersects the x-axis.
Find the equation for the plane tangent to the surface at the point P.

DFEP \#11 Solution:

We want the tangent plane to $z=x^{3} e^{y}-8 \cos (y)+4 x \sin (y)$ at the point where it intersects the x-axis.
At that point, the y - and z-coordinates are zero, so we have $0=x^{3}-8$, so $x=2$. So the point is $(2,0,0)$.
What's the normal vector? We need the partial derivatives:
$\frac{\partial z}{\partial x}=3 x^{2} e^{y}+4 \sin (y)=12$
$\frac{\partial z}{\partial y}=x^{3} e^{y}+8 \sin (y)+4 x \cos (y)=16$
So we get the plane $z=12(x-2)+16 y$.

DFEP \#12: Friday, May 8th.

Find all critical points of the function $f(x, y)=x+3 y-e^{x}-y^{3}$, and classify them as local minima, local maxima, or saddle points.

DFEP \#12 Solution:

We need the critical points of $f(x, y)=x+3 y-e^{x}-y^{3}$, so we want to solve the equations:

$$
\begin{aligned}
& f_{x}(x, y)=1-e^{x}=0 \\
& f_{y}(x, y)=3-3 y^{2}=0
\end{aligned}
$$

Which has two solutions: $(0,1)$ and $(0,-1)$. Let's check $D(x, y)$ at each point:
The second derivatives are $f_{x x}(x, y)=-e^{x}, f_{y y}(x, y)=-6 y$, and $f_{x y}(x, y)=0$.
So $D(0,1)=6$ and $D(0,-1)=-6$. Since $f_{x x}(x, y)<0$ for all (x, y), that means $(0,1)$ is a local maximum and $(0,-1)$ is a saddlepoint.

DFEP \#13: Monday, May 11th.

Compute the average value of $f(x, y)=y \sin (2 y) \cos (x y)$ over the region $[0,2] \times[0, \pi / 4]$.

DFEP \#13 Solution:

We want to compute

$$
\int_{0}^{2} \int_{0}^{\pi / 4} y \sin (2 y) \cos (x y) d y d x
$$

Oh, wait, that seems maybe impossible. Let's flip it around:

$$
\int_{0}^{\pi / 4} \int_{0}^{2} y \sin (2 y) \cos (x y) d x d y
$$

That's easier: $y \sin (2 y)$ is a constant, and the antiderivative of $\cos (x y)$ with respect to x is $\sin (x y) / y$. So we get:

$$
\left.\int_{0}^{\pi / 4}(\sin (2 y) \sin (x y)]_{0}^{2}\right) d y
$$

That's just

$$
\int_{0}^{\pi / 4} \sin ^{2}(2 y) d y=\int_{0}^{\pi / 4} \frac{1}{2}(1-\cos (4 y)) d y
$$

which comes out to $\pi / 8$. And since we want the average value over a rectangle of area $\pi / 2$, we divide this by $\pi / 2$ to get $1 / 4$.

DFEP \#14: Wednesday, May 13th.
Compute the double integral:

$$
\int_{0}^{e^{9}} \int_{\sqrt{\ln (y)}}^{3} 2 x y e^{x^{2}} d x d y
$$

DFEP \#14 Solution:

Okay, this is pretty easy as is:

$$
\left.\int_{0}^{e^{9}} \int_{\sqrt{\ln (y)}}^{3} 2 x y e^{x^{2}} d x d y=\int_{0}^{e^{9}}\left(y e^{x^{2}}\right)\right]_{\sqrt{\ln (y)}}^{3} d y=\int_{0}^{e^{9}}\left(y e^{9}-y^{2}\right) d y
$$

which we can evaluate as

$$
\left.\frac{e^{9}}{2} y^{2}-\frac{1}{3} y^{3}\right]_{0}^{e^{9}}=\frac{e^{27}}{6}
$$

But you should totally try reversing the order of integration anyway, for practice. You'll get:

$$
\int_{0}^{3} \int_{0}^{e^{x^{2}}} 2 x y e^{x^{2}} d y d x
$$

which also comes out to $\frac{e^{27}}{6}$.
DFEP \#15: Friday, May 15th.
Compute the area inside the cardioid $r=\sin (\theta)+1$ but outside the circle $x^{2}+y^{2}=1$.

DFEP \#15 Solution:

Here's a picture:

We want to integrate 1 over this domain. θ runs from 0 to π, and for any given θ, r runs from 1 to $1+\sin (\theta)$. So we want:

$$
\left.\int_{0}^{\pi} \int_{1}^{1+\sin (\theta)} r d r d \theta=\int_{0}^{\pi}\left(\frac{1}{2} r^{2}\right)\right]_{1}^{1+\sin (\theta)} d \theta=\frac{1}{2} \int_{0}^{\pi}\left(\sin ^{2}(\theta)+2 \sin (\theta)\right) d \theta
$$

This becomes

$$
\left.\frac{1}{2} \int_{0}^{\pi}\left(\frac{1}{2}(1-\cos (2 \theta))+2 \sin (\theta)\right) d \theta=\frac{1}{2}\left(\frac{x}{2}-\frac{1}{4} \sin (2 \theta)-2 \cos (\theta)\right)\right]_{0}^{\pi}
$$

which simplifies to $\frac{\pi}{4}+2$.

DFEP \#16: Wednesday, May 27th.
Consider the function $f(x)=\ln (2 x-5)$.
(a) Find the second Taylor polynomial $T_{2}(x)$ for $f(x)$ centered at $b=3$.
(b) Use your answer from part (a) to approximate $\ln (1.04)$.
(c) Give a reasonable error bound on your answer from part (b).

DFEP \#16 Solution:

(a) We want $T_{2}(x)$ centered at $b=3$ for the function $\ln (2 x-5)$. The first few derivatives are:

$$
f(x)=\ln (2 x-5) \quad f^{\prime}(x)=\frac{2}{2 x-5} \quad f^{\prime \prime}(x)=\frac{-4}{(2 x-5)^{2}}
$$

Plugging in $x=3$ we find $f(3)=0, f^{\prime}(3)=2$, and $f^{\prime \prime}(3)=-4$. So:

$$
T_{2}(x)=0+2(x-3)+\frac{1}{2}(-4)(x-3)^{2}=2(x-3)-2(x-3)^{2}
$$

(b) We want to approximate $\ln (1.04)$. Well, that's $\ln (2(3.02)-5)$, so it's $f(3.02)$. We can approximate it as

$$
T_{2}(3.02)=2(3.02-3)-2(3.02-3)^{2}=.04-2(.0004)=.0392
$$

(c) To find an error bound, we'll need to know $f^{\prime \prime \prime}(x)=\frac{16}{(2 x-5)^{3}}$.

On the interval [3,3.02], this is largest when the denominator is smallest, so the maximum is at $x=3$ and we get $M=16$. So the error is bounded by:

$$
\left|T_{2}(3.02)-f(3.02)\right| \leq \frac{1}{6}(16)|3.02-3|^{3} \approx .00002133
$$

DFEP \#17: Friday, May 29th.

Let $T_{n}(x)$ be the nth Taylor polynomial for $f(x)=\sin (4 x)$ centered at $b=0$.
Use Taylor's inequality to find an interval $I=[-a, a]$ so that the error $\left|T_{n}(x)-f(x)\right|$ on the interval I less than or equal to 0.01 . Your answer will depend on n.

DFEP \#17 Solution:

If $f(x)=\sin (4 x)$, then $f^{\prime}(x)=4 \cos (4 x), f^{\prime \prime}(x)=-16 \sin (4 x), f^{\prime \prime \prime}(x)=-64 \cos (4 x)$, and in general $f^{(n)}(x)= \pm 4^{n} \sin (x)$ or $\pm 4^{n} \cos (x)$.

We could spend a while worrying about whether the nth derivative is positive or negative and whether it's $\sin (4 x)$ or $\cos (4 x)$, but remember that our goal is to find an error bound, so we only need the maximum of $\left|f^{(n+1)}(x)\right|$. Since both $|\sin (4 x)|$ and $|\cos (4 x)|$ have maximum values of 1 , we end up with $M=4^{n+1}$.
So, on the interval $[-a, a]$, the nth Taylor polynomial has error bound

$$
\left|T_{n}(x)-f(x)\right| \leq \frac{1}{(n+1)!} 4^{n+1} a^{n+1}
$$

If we want this to be less than or equal to 0.01 , then we set

$$
\frac{1}{(n+1)!} 4^{n+1} a^{n+1} \leq 0.01
$$

and solve to get

$$
a \leq \sqrt[n+1]{\frac{(n+1)!}{100 \cdot 4^{n+1}}}
$$

DFEP \#18: Monday, June 1st.

Let $f(x)=\sin \left(2 x^{3}\right)$.
(a) Find the Taylor series for $f(x)$ centered at $b=0$. Write your answer in Σ-notation.
(b) Compute $f^{(45)}(0)$.

