Jonah Ostroff Math124A15, section F, Fall 2015 Instructor: Jonah Ostroff

1. -/6 pointsSCalcET7 2.2.004.

Use the given graph of f to state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

- (a) $\lim_{x \to 2^{-}} f(x)$
- (b) $\lim_{x \to 2^+} f(x)$
- (c) $\lim_{x \to 2} f(x)$
- (d) f(2)
- (e) $\lim_{x \to 4} f(x)$
- (f) f(4)

2. -/8 pointsSCalcET7 2.2.007.

For the function g whose graph is given, state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

- (a) $\lim_{t \to 0^{-}} g(t)$
- (b) $\lim_{t \to 0^+} g(t)$
- (c) $\lim_{t \to 0} g(t)$
- (d) $\lim_{t \to 2^{-}} g(t)$
- (e) $\lim_{t \to 2^+} g(t)$
- (f) $\lim_{t \to 2} g(t)$
- (g) g(2)
- (h) $\lim_{t \to 4} g(t)$

3. -/4 pointsSCalcET7 2.2.011.

Sketch the graph of the function.

$$f(x) = \begin{cases} 3 + x & \text{if } x < -2\\ x^2 & \text{if } -2 \le x < 2\\ 6 - x & \text{if } x \ge 2 \end{cases}$$

Use the graph to determine the values of a for which $\lim_{x \to a} f(x)$ does not exist. (Enter your answers as a comma-separated

list.)

a =

4. -/4 pointsSCalcET7 2.2.025.

Use a table of values to estimate the value of the limit. If you have a graphing device, use it to confirm your result graphically. (Round your answer to two decimal places.)

$$\lim_{x \to 1} \frac{x^7 - 1}{x^2 - 1}$$

5. -/4 pointsSCalcET7 2.2.031.

Determine the infinite limit.

$$\lim_{x \to 4} \frac{3 - x}{(x - 4)^2}$$

- O 0
- −∞
- **6.** -/4 pointsSCalcET7 2.2.046.

In the theory of relativity, the mass of a particle with velocity v is

$$m=\frac{m_0}{\sqrt{1-v^2/c^2}},$$

where m_0 is the mass of the particle at rest and c is the speed of light. What happens as $v \to c^-$?

- $\bigcirc m \rightarrow \infty$
- $\bigcirc m \rightarrow m_0$
- $\bigcap m \to -\infty$
- $\bigcirc m \rightarrow 0$

7. -/5 pointsSCalcET7 2.2.503.XP.MI.

Use the given graph of f to state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

- (a) $\lim_{x \to 5^{-}} f(x)$
- (b) $\lim_{x \to 5^+} f(x)$
- (c) $\lim_{x \to 5} f(x)$
- (d) $\lim_{x \to 9} f(x)$
- (e) f(9)

8. -/5 points

Consider $\lim_{t\to 0^+} (\frac{-2\sin(2t)}{\sin(2t) + 2t\cos(2t)})$. Using a table of values, the limiting value is

(Enter "DNE" if the limit does not exist.)

9. -/8 points

The figure below shows a fixed circle C_1 with equation $(x-1)^2+y^2=1$ and another shrinking circle C_2 centered at the origin with positive y-intercept P=(0,r). Let Q be the point of intersection between the two circles pictured, draw a line through P and Q and let R be the x-intercept of that line.

(a) Find the coordinates of the point Q; your answers will involve r: Q= (

//	

<i>'</i>	

).

(b) The line through P and Q has equation

x +

.

(c) The point R=(

,

	/
).	
(d) [lim_(r->0)R]=	(
	//
	/
,	
	//
	/
).	

10.-/6 points

A circle of radius r centered at the point (0,r) in the plane will intersect the y-axis at the origin and the point A=(0,2r), as pictured below. A line passes through the point A and the point $C=(4r^2,0)$ on the x-axis. In this problem, we will investigate the coordinates of the intersection point B between the circle and the line, as r-> infty

(a) The line through A and C has equation:

y=	
x +	
	,

(b) The x-coordinate of the point B is

	11
	h

.

(c) The y-coordinate of the point B is

	- 1

.

(d) The limit as r->infty of the x-coordinate of B is

1

(if your answer is infty, write infinity).

e) The limit as	r->infty	of the y-coordinate of B is
	4	
	4	
if your answer i	s infty,	write infinity).