WebAssign

Assignment #2: Chapter 2.1 (Homework)

Jonah Ostroff Math124A15, section F, Fall 2015

Instructor: Jonah Ostroff

Current Score: - / 45 Due: Thursday, October 8 2015 11:59 PM PDT

1. -/10 pointsSCalcET7 2.1.007.

The table shows the position of a cyclist.

t (seconds)	0	1	2	3	4	5
s (meters)	0	1.3	5.3	10.7	17.2	24.4

(a) Find the average velocity for each time period.

(i)	[1, 3	3]
		m/s

(b) Estimate the instantaneous velocity when t = 3.

m/s

2. -/10 pointsSCalcET7 2.1.003.

The point P(3, -2) lies on the curve y = 2/(2 - x).

(a) If Q is the point $(x, \frac{2}{2} - x)$, use your calculator to find the slope m_{PQ} of the secant line PQ (correct to six decimal places) for the following values of x.

- (i) 2.9 $m_{PQ} =$
- (ii) $\frac{2.99}{m_{PQ}} = \boxed{}$
- (iii) 2.999 $m_{PQ} =$
- (iv) 2.9999 $m_{PQ} =$
- (v) 3.1 $m_{PQ} =$
- (vi) 3.01 $m_{PQ} =$
- (vii) 3.001 $m_{PQ} =$
- (viii) 3.0001 $m_{PO} =$

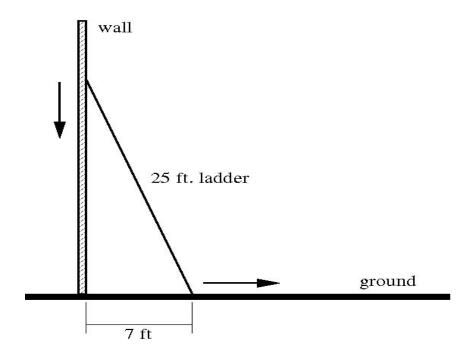
(b) Using the results of part (a), guess the value of the slope m of the tangent line to the curve at P(3, -2).

m =

(c) Using the slope from part (b), find an equation of the tangent line to the curve at P(3, -2).

3. -/14 points

A ladder 25 feet long is leaning against the wall of a building. Initially, the foot of the ladder is 7 feet from the wall. The foot of the ladder begins to slide at a rate of 2 ft/sec, causing the top of the ladder to slide down the wall. The location of the foot of the ladder at time t seconds is given by the parametric equations (7+2t,0).



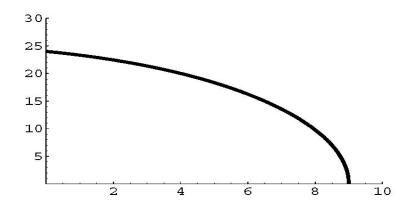
(a) The location of the top of the ladder will be given by parametric equations (0,y(t)). The formula for y(t)=

- . (Put your cursor in the box, click and a palette will come up to help you enter your symbolic answer.)
- (b) The domain of t values for y(t) ranges from _____ to ____
- (c) Calculate the average velocity of the top of the ladder on each of these time intervals (correct to three decimal places):

time interval	ave velocity	time interval	ave velocity
[0,2]		[2,4]	
[6,8]		[8,9]	

- (d) Find a time interval [a,9] so that the average velocity of the top of the ladder on this time interval is -20 ft/sec i.e. a=
- (e) Using your work above and this picture of the graph of the function y(t) given below,

answer these true/false questions: (Type in the word "True" or "False")



The top of the ladder is moving down the wall at a constant rate

- \bigcirc T
- F

The foot of the ladder is moving along the ground at a constant rate

- \bigcirc T
- F

There is a time at which the average velocity of the top of the ladder on the time interval [a,9] is 1 ft/sec

- \bigcirc T
- \bigcirc F

There is a time at which the average velocity of the top of the ladder on the time interval [a,9] is 0 ft/sec

- \bigcirc T
- O F

There is a time at which the average velocity of the top of the ladder on the time interval [a,9] is -100 ft/sec

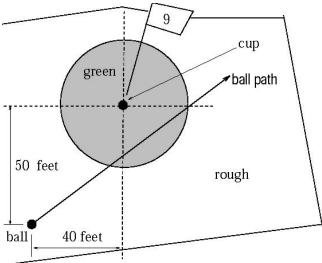
- \bigcirc T
- \bigcirc F

There is a time at which the average velocity of the top of the ladder on the time interval [a,9] is less than -100 ft/sec

- \bigcirc T
- F

4. -/4 points

The cup on the 9^{th} hole of a golf course is located dead center in the middle of a circular green which is 40 feet in radius. Your ball is located as in the picture below. The ball follows a straight line path and exits the green at the right-most edge. Assume the ball travels 8 ft/sec. Introduce coordinates so that the cup is the origin of an xy-coordinate system. Provide numerical answers below with two decimal places of accuracy.

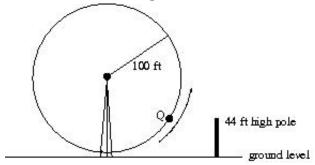


- (b) The ball will exit the green exactly seconds after it is hit.
- (c) Suppose that L is a line tangent to the boundary of the golf green and parallel to the path of the ball. Let Q be the point where the line is tangent to the circle. Notice that there are two possible positions for Q. Find the possible x-coordinates of Q:

smallest x-coordinate = largest x-coordinate =

5. -/4 points

A Ferris wheel of radius 100 feet is rotating at a constant angular speed ω rad/sec counterclockwise. Using a stopwatch, the rider finds it takes 4 seconds to go from the lowest point on the ride to a point Q, which is level with the top of a 44 ft pole. Assume the lowest point of the ride is 3 feet above ground level.



Let Q(t)=(x(t),y(t)) be the coordinates of the rider at time t seconds; i.e., the parametric equations. Assuming the rider begins at the lowest point on the wheel, then the parametric equations will have the form: $x(t)=r\cos(\omega t-\pi/2)$ and $y(t)=r\sin(\omega t-\pi/2)$, where r,ω can be determined from the information given. Provide answers below accurate to 3 decimal places. (Note: We have imposed a coordinate system so that the center of the ferris wheel is the origin. There are other ways to impose coordinates, leading to different parametric equations.)

(a)
$$r = \boxed{}$$
 feet

(b)
$$\omega =$$
 rad/sec

(c) During the first revolution of the wheel, find the times when the rider's height above the ground is 80 feet.

first time = [sec	
second time:	=		sec

6. -/3 pointsSCalcET7 10.1.033.

Find parametric equations for the path of a particle that moves along the circle $x^2 + (y - 2)^2 = 16$ in the manner described. (Enter your answer as a comma-separated list of equations. Let x and y be in terms of t.)

(a) Once around clockwise, starting at (4, 2). $0 \le t \le 2\pi$.

(b) Three times around counterclockwise, starting at (4, 2). $0 \le t \le 6\pi$.

(c) Halfway around counterclockwise, starting at (0, 6). $0 \le t \le \pi$.

