WebAssign

Assignment #1: Precalculus Review (Homework)

Jonah Ostroff

Math124A15, section F, Fall 2015 Instructor: Jonah Ostroff

1. -/8 points

Current Score: - / 40 Due: Thursday, October 8 2015 11:58 PM PDT

Consider the circle of radius 10 centered at the origin. Provide answers accurate to two decimal places.

- (a) The equation of the tangent line to the circle through the point (-6,8) has equation $y = \begin{bmatrix} x + \end{bmatrix}$.
- (b) Suppose that L is a tangent line to this circle which is parallel to the line y=5x+7 and has a negative y intercept. Then the point of tangency of L with this circle is (

2. -/8 points

Draw the unit circle and plot the point P=(7,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy.

(a) The line L_1 is tangent to the unit circle at the point

(_____, ____).

(b) The tangent line L_1 has equation:

y= x + .

- (d) The tangent line L_2 has equation:

y= x + .

3. -/3 points

The parametric equations

$$x = x_1 + (x_2 - x_1)t$$
, $y = y_1 + (y_2 - y_1)t$

where $0 \le t \le 1$ describe the line segment that joins the points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$.

Draw the triangle with vertices A(1, 1), B(5, 4), C(1, 6). Find the parametrization, including endpoints, and sketch to check. (Enter your answers as a comma-separated list of equations. Let x and y be in terms of t.)

,	,
A to B	
B to C	//
A to C	//

4. -/16 points

An ant is moving around the unit circle in the plane so that its location is given by the parametric equations $(\cos(\pi t), \sin(\pi t))$. Assume the distance units in the plane are "feet" and the time units are "seconds". In particular, the ant is initially at the point A=(1,0). A spider is located at the point S=(5,0) on the x-axis. The spider plans to move along the tangential line pictured at a constant rate. Assume the spider starts moving at the same time as the ant. Finally, assume that the spider catches the ant at the tangency point P the second time the ant reaches P.

(a) The coordinates of the tangency point $P=($
//
).
(b) The FIRST time the ant reaches <i>P</i> is
seconds.

(c) The SECOND time the ant reaches P is

seconds.	
(d) The parametric eq	juations for the motion of the spider are:
t +	
4	
; y(t)=	
//	
4	
t +	

5. -/5 points

The graph of the quadratic function $y = 2x^2 - 4x + 1$ is pictured below, along with the point P= (-1,7) on the parabola and the tangent line through P. A line that is tangent to a parabola does not intersect the parabola at any other point. We can use this fact to find the equation of the tangent line.

(a) If m is the slope of the tangent line, then using the slope/point formula, the equation of the tangent line will be:

y = m(x-	
	//
\	
) +	
	/

(b) The values of x for which the point (x,y) lies on both the line and the parabola satisfy the quadratic equation:

$$2x^2 + bx + c = 0$$

where b=
and c=

4	
(b and c should deper	nd on m).
solutions. The value of	f m, the quadratic equation in part (b) has two solutions or no of m for which the quadratic equation has exactly one solution is the ine. This value is $m=$