## HW #1: Precalc Review (6367116)

| Current Score: | 0/65 |      | Due: |     | Thu Oct 2 2 |     |     | 2014 11:59 PM PD |
|----------------|------|------|------|-----|-------------|-----|-----|------------------|
| Question       | _    |      |      |     | 5           |     | -   | Total            |
| Points         | 0/8  | 0/16 | 0/10 | 0/9 | 0/16        | 0/5 | 0/1 | 0/65             |

1. 0/8 points circletangentlines2 [1229844]

Consider the circle of radius 10 centered at the origin. Provide answers accurate to two decimal places.

- (a) The equation of the tangent line to the circle through the point (-6,8) has equation
- $y = \begin{bmatrix} x + \end{bmatrix}$ .
- (b) Suppose that L is a tangent line to this circle which is parallel to the line y=5x+7 and has a negative y intercept. Then the point of tangency of L with this circle is ( , ).

2. 0/16 points circletangentlines1rand [1228908]

Draw the unit circle and plot the point P=(3,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy.



(a) The line  $\mathcal{L}_1$  is tangent to the unit circle at the point

| / |   | `  |
|---|---|----|
| ( |   | ). |
| • | , | ,  |

(b) The tangent line  $L_1$  has equation:

| v= | x + | L |
|----|-----|---|

- (d) The tangent line  $L_2$  has equation:

$$y = \begin{bmatrix} x + \end{bmatrix}$$

**3.** 0/10 points SCalcET7 10.1.045. [1889057]

Suppose that the position of one particle at time t is given by

$$x_1 = 4 \sin t$$
,  $y_1 = 2 \cos t$ ,  $0 \le t \le 2\pi$ 

and the position of a second particle is given by

$$x_2 = -4 + \cos t$$
,  $y_2 = 1 + \sin t$ ,  $0 \le t \le 2\pi$ .

(a) Graph the paths of both particles.









How many points of intersection are there?

points of intersection

- (b) Are any of these points of intersection *collision points*? In other words, are the particles ever at the same place at the same time?
  - Yes
  - No

If so, find the collision points. (Enter you answers as a comma-separated list of ordered pairs. If an answer does not exist, enter DNE.)

- (c) If the x-coordinate of the second particle is given by  $x_2 = 4 + \cos t$  instead, is there still a collision?
  - Yes
  - No

**4.** 0/9 points SCalcET7 10.1.032. [1889003]

The parametric equations

$$x = x_1 + (x_2 - x_1)t$$
,  $y = y_1 + (y_2 - y_1)t$ 

where  $0 \le t \le 1$  describe the line segment that joins the points  $P_1(x_1, y_1)$  and  $P_2(x_2, y_2)$ .

Use a graphing device to draw the triangle with vertices A(1, 1), B(4, 4), C(1, 6). Find the parametrization, including endpoints, and sketch to check. (Enter your answers as a comma-separated list of equations. Let x and y be in terms of t.)

A to B

B to C

A to C

5. 0/16 points antspiderparametric [2551883]

An ant is moving around the unit circle in the plane so that its location is given by the parametric equations  $(\cos(\pi t), \sin(\pi t))$ . Assume the distance units in the plane are "feet" and the time units are "seconds". In particular, the ant is initially at the point A=(1,0). A spider is located at the point S=(10,0) on the x-axis. The spider plans to move along the tangential line pictured at a constant rate. Assume the spider starts moving at the same time as the ant. Finally, assume that the spider catches the ant at the tangency point P the second time the ant reaches P.



- (a) The coordinates of the tangency point P=( , ).
- (b) The FIRST time the ant reaches *P* is seconds.
- (c) The SECOND time the ant reaches P is seconds.
- (d) The parametric equations for the motion of the spider are:

$$x(t) = t + ;$$

$$y(t) = t + .$$

**6.** 0/5 points parabolaTL2 [2689929]

The graph of the quadratic function  $y = 2x^2 - 4x + 1$  is pictured below, along with the point P=(-1,7) on the parabola and the tangent line through P. A line that is tangent to a parabola does not intersect the parabola at any other point. We can use this fact to find the equation of the tangent line.



(a) If m is the slope of the tangent line, then using the slope/point formula, the equation of the tangent line will be:

$$y = m(x- ) +$$

(b) The values of x for which the point (x,y) lies on both the line and the parabola satisfy the quadratic equation:

$$2x^2 + bx + c = 0$$

where b= and c= (b and c should depend on m).

(c) For most values of m, the quadratic equation in part (b) has two solutions or no solutions. The value of m for which the quadratic equation has exactly one solution is the slope of the tangent line. This value is m =

**7.** 0/1 points

SCalcET7 2.1.JIT.006.MI. [1779313]

Find a function whose graph is a parabola with vertex (1, -4) and that passes through the point (2, 1).

f(x) =

Assignment Details