For the function g whose graph is given, state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

1. 0/8 points

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/8</td>
<td>0/44</td>
</tr>
</tbody>
</table>

(a) $\lim_{t \to 0^-} g(t)$

(b) $\lim_{t \to 0^+} g(t)$

(c) $\lim_{t \to 0} g(t)$

(d) $\lim_{t \to 2^-} g(t)$

(e) $\lim_{t \to 2^+} g(t)$

(f) $\lim_{t \to 2} g(t)$

(g) $g(2)$

(h) $\lim_{t \to 4} g(t)$
2. 0/4 points

Determine the infinite limit.

\[
\lim_{x \to -2^+} \frac{x + 1}{x + 2}
\]

- \(\infty\)
- \(-\infty\)

3. 0/4 points

Determine the infinite limit.

\[
\lim_{x \to 3} \frac{2 - x}{(x - 3)^2}
\]

- \(\infty\)
- \(-\infty\)

4. 0/4 points

In the theory of relativity, the mass of a particle with velocity \(v\) is

\[
m = \frac{m_0}{\sqrt{1 - v^2/c^2}},
\]

where \(m_0\) is the mass of the particle at rest and \(c\) is the speed of light. What happens as \(v \to c^-\)?

- \(m \to -\infty\)
- \(m \to 0\)
- \(m \to \infty\)
- \(m \to m_0\)
5. 0/5 points

Use the given graph of \(f \) to state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

(a) \(\lim_{x \to 3^-} f(x) \)

(b) \(\lim_{x \to 3^+} f(x) \)

(c) \(\lim_{x \to 3} f(x) \)

(d) \(\lim_{x \to 7} f(x) \)

(e) \(f(7) \)

6. 0/5 points

Consider \(\lim_{t \to 0^+} \frac{-2 \sin(8t)}{\sin(8t) + 2t \cos(8t)} \). Using a table of values, the limiting value is \(\) (Enter "DNE" if the limit does not exist.)
The figure below shows a fixed circle C_1 with equation $(x - 1)^2 + y^2 = 1$ and another shrinking circle C_2 centered at the origin with positive y-intercept $P=(0,r)$. Let Q be the point of intersection between the two circles pictured, draw a line through P and Q and let R be the x-intercept of that line.

(a) Find the coordinates of the point Q; your answers will involve r: $Q = (\ , \)$.

(b) The line through P and Q has equation $y = x + \ $.

(c) The point $R = (\ , \)$.

(d) $\lim_{r \to 0} R = (\ , \)$.
A circle of radius r centered at the point $(0,r)$ in the plane will intersect the y-axis at the origin and the point $A=(0,2r)$, as pictured below. A line passes through the point A and the point $C=(5r^2,0)$ on the x-axis. In this problem, we will investigate the coordinates of the intersection point B between the circle and the line, as $r \to \infty$.

(a) The line through A and C has equation:

$$y = x +$$

(b) The x-coordinate of the point B is

(c) The y-coordinate of the point B is

(d) The limit as $r \to \infty$ of the x-coordinate of B is (if your answer is ∞, write infinity).

(e) The limit as $r \to \infty$ of the y-coordinate of B is (if your answer is ∞, write infinity).