HW #3: Chapter 2.2 (6367093)

	Current Score:	0/	44	D	ue:	٦	Гие	Oct	7 2	014 11:59 PM PDT
Ī	Question						6			Total
	Points	0/8	0/4	0/4	0/4	0/5	0/5	0/8	0/6	0/44

1. 0/8 points SCalcET7 2.2.007. [1608996]

For the function g whose graph is given, state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

- (a) $\lim_{t \to 0^{-}} g(t)$
- (b) $\lim_{t \to 0^+} g(t)$
- (c) $\lim_{t \to 0} g(t)$
- (d) $\lim_{t \to 2^{-}} g(t)$
- (e) $\lim_{t \to 2^+} g(t)$
- (f) $\lim_{t \to 2} g(t)$
- (g) g(2)
- (h) $\lim_{t \to 4} g(t)$

2. 0/4 points

SCalcET7 2.2.029. [1633303]

Determine the infinite limit.

$$\lim_{x \to -2^+} \frac{x+1}{x+2}$$

- () o
- −∞
- **3.** 0/4 points SCalcET7 2.2.031. [1633309]

Determine the infinite limit.

$$\lim_{x \to 3} \frac{2-x}{(x-3)^2}$$

- ∞
- −∞
- **4.** 0/4 points SCalcET7 2.2.046. [1633295]

In the theory of relativity, the mass of a particle with velocity v is

$$m=\frac{m_0}{\sqrt{1-v^2/c^2}},$$

where m_0 is the mass of the particle at rest and c is the speed of light. What happens as $v \rightarrow c^-$?

- $0 m \rightarrow -\infty$
- $0 m \rightarrow 0$
- $m \to \infty$
- \bigcirc $m \rightarrow m_0$

5. 0/5 points

SCalcET7 2.2.503.XP.MI. [1886877]

Use the given graph of f to state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

- (a) $\lim_{x \to 3^{-}} f(x)$
- (b) $\lim_{x \to 3^+} f(x)$
- (c) $\lim_{x \to 3} f(x)$
- (d) $\lim_{x \to 7} f(x)$
- (e) f(7)

limit does not exist.)

6. 0/5 points numericallimit1 [2603871]

Consider $\lim_{t\to 0^+} (\frac{-2\sin(8t)}{\sin(8t)+2t\cos(8t)})$. Using a table of values, the limiting value is

(Enter "DNE" if the

7. 0/8 points shrinkingcircle [1234037]

The figure below shows a fixed circle C_1 with equation $(x-1)^2+y^2=1$ and another shrinking circle C_2 centered at the origin with positive y-intercept P=(0,r). Let Q be the point of intersection between the two circles pictured, draw a line through P and Q and let R be the x-intercept of that line.

- (a) Find the coordinates of the point Q; your answers will involve r: Q= (,).
- (b) The line through P and Q has equation

$$y=$$
 $x +$.

- (c) The point R=(
- $\lim_{r \to 0} R = ($

8. 0/6 points circlelinerace [1743306]

A circle of radius r centered at the point (0,r) in the plane will intersect the y-axis at the origin and the point A=(0,2r), as pictured below. A line passes through the point A and the point $C=(5r^2,0)$ on the x-axis. In this problem, we will investigate the coordinates of the intersection point B between the circle and the line, as $r\to\infty$

(a) The line through A and C has equation:

- (b) The x-coordinate of the point B is
- (c) The y-coordinate of the point B is
- (d) The limit as $r \to \infty$ of the x-coordinate of B is

(if your answer is ∞ , write infinity).

(e) The limit as $r \to \infty$ of the y-coordinate of B is

(if your answer is ∞ , write infinity).

Assignment Details