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Abstract

We prove new upper and lower bounds on transversal numbers of several classes
of simplicial complexes. Specifically, we establish an upper bound on the transversal
numbers of pure simplicial complexes in terms of the number of vertices and the number
of facets, and then provide constructions of pure simplicial complexes whose transver-
sal numbers come close to this bound. We introduce a new family of d-dimensional
polytopes that could be considered as “siblings” of cyclic polytopes and show that
the transversal ratios of such odd-dimensional polytopes are 2/5 — o(1). The previous
record for the transversal ratios of (2k + 1)-polytopes was 1/(k + 1). Finally, we con-
struct infinite families of 3-, 4-, and 5-dimensional simplicial spheres with transversal
ratios converging to 4/7, 1/2, and 6/11, respectively. The previous record was 11/21,
2/5, and 1/2, respectively.

1 Introduction

The goal of this paper is to establish several upper and lower bounds on the transversal
numbers and transversal ratios of pure simplicial complexes, simplicial polytopes, and
simplicial spheres.

A transversal of a hypergraph H = (V| F) with vertex set V' and edge set E is defined
as a subset of V' that intersects all edges of H. The transversal number of H, which we
denote by T'(H), is the minimum cardinality of a transversal of H, and the transversal
ratio of H, 7(H), is T(H)/|V|.

The class of d-uniform hypergraphs is closely related to the class of pure (d — 1)-
dimensional simplicial complexes: if A is a pure simplicial (d—1)-dimensional complex with
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vertex set V, then the hypergraph H(A) = (V, F) whose set of edges F is the set of facets
of A, is a d-uniform hypergraph. Conversely, every d-uniform hypergraph H = (V, E)
determines a pure (d — 1)-dimensional simplicial complex on vertex set V' whose set of
facets is given by E. For a pure simplicial complex A, we define the transversal number
of A, T(A), and the transversal ratio of A, 7(A), as T(H(A)) and 7(H(A)), respectively.
Throughout this paper, we will use the language of pure simplicial complexes.

The starting point of our paper is the following problem raised by Turan:

Problem 1.1. [27] Determine f(n,m,d) = maxT(H), where H ranges over all d-uniform
hypergraphs with n vertices and with m edges (equivalently, where H ranges over all pure
(d — 1)-dimensional simplicial complexes with n vertices and m facets).

A lot of work has been done on Turdn’s problem in the case where m is at most linear
in n, especially in relation to Tuza’s problem; see [2] and [8]. Here, motivated by results
obtained and questions raised in [3, 7, 10, 14], we are interested in transversal numbers
of simplicial complexes with interesting geometric and topological properties, such as, for
instance, pseudomanifolds, Eulerian complexes, and simplicial spheres. (We will discuss
definitions of these objects in Section 2. For now, we merely mention that all simplicial
spheres are Eulerian complexes, and all pseudomanifolds are pure complexes.) According
to the Lower Bound Theorem [4, 5] and the Upper Bound Theorem [16, 26|, a simplicial
sphere of dimension d — 1 > 2 with n vertices has at least (d — 1)n — (d> — d — 2) and

n—| 3= n—| 42| . . s .
at most ( 2 ) + ( 2 ) facets. For this reason, we are primarily interested in the

m > n case of Turdn’s problem, and, especially, in the case where m is about nl%/2/.
Not much appears to be known about this case of Turdn’s problem. Among our results
in this direction are:

1. If d > 2 and A is a pure (d — 1)-dimensional simplicial complex with n vertices and
m facets, then for n sufficiently large, T'(A) < n(1 — %m_l/d) + 1; see Theorem 3.1.
In particular, there is an absolute constant ¢ > 0 independent of n and d such that
for every Eulerian complex A with n vertices, T(A) < n — en!'/? if d is even, and
T(A) < n — en(D/Cd if d is odd; see Corollary 3.3.

2. Conversely, for every d > 2 and n < m < n(4t1/2 there exists a family of pure
(d—1)-dimensional complexes { A"} such that A’ has n vertices, Cqm facets, and
T(AF™) > n(1- C’élnl/(dfl)mfl/(dfl)), where Cy,C?, > 0 are absolute constants
independent of n and m; see Proposition 3.8.

In the second part of the paper, our focus is specifically on transversal numbers of
simplicial spheres and (boundary complexes of) simplicial polytopes. It follows easily from
the Four Color Theorem that the transversal number of any simplicial 2-sphere with n
vertices is at most n/2 (see [7, Prop. 3.1]); furthermore, for some values of n, n — oo, there
exist simplicial 2-spheres with n vertices whose transversal numbers are equal to n/2; see [7,



Section 4]. This motivates studying asymptotics of transversal ratios of simplicial polytopes
and simplicial spheres — a problem that was raised, for instance, in [3, 7]. Specifically, for
d> 2, we let

Té) = limsupmax{7(A): A = 09Q, where @ is a simplicial d-polytope with n vertices},
n—oo

77 = limsupmax{7(A): A is a simplicial (d — 1)-sphere with n vertices}.
n—oo

Very little is known about these two sequences at present. Clearly, 7'2P = TQS =1/2 and
0 < Tf < Tgf < 1 for all d > 3, and, as was mentioned above, Téj = 7':;)9 = 1/2. Using
cyclic polytopes, Briggs et al. (see [7, Prop. 3.6]) showed that for all k > 2, 71, > 1/2;
additionally, with computer help, they proved that 77 > 11/21 (see [7, Theorem 1.2]). On
the other hand, for d = 2k+1 > 5, they were only able to prove the bound TQIerl > 1/(k+1).
(In this regard, it should be pointed out that all odd-dimensional cyclic polytopes have
transversal number two independently of their number of vertices!) Finally, using certain
families of (highly neighborly) 2k-spheres and centrally symmetric 2k-spheres, the authors
showed in [21] that 75, 41 = 2/5. This completes the list of bounds that have been known
so far.

The main contribution of this paper are the following new lower bounds:

1. TQIZ_H > 2/5 for all k > 2; see Theorem 4.12.
2. 75 >4/7, 758 >1/2, and 7§ > 6/11; see Theorems 5.5, 5.6, and 5.7.

Most of our proofs either use or are inspired by the properties of the cyclic polytopes.
To construct families of pure complexes with relatively large transversal numbers (see
Section 3), we use a variation of Gale’s evenness condition [28, Example 0.6]. To prove
that 75,., > 2/5 for all k& > 2, we utilize Shemer’s sewing technique [25]. Using this
technique, for all d > 4, we introduce a new family of simplicial d-polytopes that could
be considered as siblings of cyclic polytopes (see Section 4). The idea behind constructing
simplicial (in fact, PL) spheres of dimension 3 < d—1 < 5 with n vertices that have higher
transversal ratios than previously known resembles that of [7, Section 5]: specifically, we
start with the boundary complex of the cyclic d-polytope with n vertices (if d is even) or
with the boundary complex of the sibling of the cyclic d-polytope introduced in Section
4 (if d is odd), and then apply a sequence of strategically chosen bistellar flips (or local
retriangulations) to increase the transversal ratio; see Section 5 for details.

The structure of the paper is as follows. In Section 2, we discuss basics of hypergraphs
and simplicial complexes, with a particular emphasis on simplicial polytopes and spheres;
we also review there some results and definitions pertaining to transversal numbers. Sec-
tion 3 is devoted to transversal numbers of pure simplicial complexes. In Section 4, we
construct siblings of cyclic polytopes and use them to prove that 7'212 41 =>2/5 forall k> 2.
Finally, Section 5 presents constructions of PL spheres of dimensions 3, 4, and 5 with



higher transversal numbers than previously known: Section 5.1 discusses a possible general
approach, while Sections 5.2 and 5.3 provide specific details in dimensions 3 and 5, and
dimension 4, respectively. (We note that Sections 4 and 5 could be read independently of
Section 3.) We close in Section 6 with a few open problems.

We hope that the proof techniques introduced in the paper and, especially, the siblings
of the cyclic polytopes will be of interest in their own right.

2 Preliminaries

2.1 Hypergraphs and simplicial complexes

We start with basic definitions and results pertaining to hypergraphs and simplicial com-
plexes. A hypergraph H = (V, E) consists of a (finite) set V', called the vertex set of H,
and a collection E of subsets of V, called the edge set of H. We say that H is r-uniform
if each edge of H has size r. In particular, graphs are 2-uniform hypergraphs. We usually
assume that every vertex belongs to some edge.

Similarly, a simplicial complex A with vertex set V' = V(A) is a collection of subsets of
V' that is closed under inclusion, that is, if F' € A and G C F, then G € A. The elements
of A are called faces. We usually assume that every v € V forms a face which for brevity
we denote by v instead of {v}. The dimension of a face F' € A is |F|—1, and the dimension
of A is the maximum dimension of its faces. The number of i-dimensional faces of A is
denoted by f;(A).

The maximal under inclusion faces of a simplicial complex are called facets. A simplicial
complex A is pure if all facets of A have the same dimension; in this case, the faces of
dimension dim A—1 are called ridges. Two important examples of pure simplicial complexes
with vertex set V are the simplex, V, consisting of all subsets of V, and the boundary
complex of V', OV, consisting of all subsets of V but V itself. When V = {v} is a singleton,
we write 7 instead of {v}.

We now list several operations that allow us to construct new simplicial complexes
from the old ones. If A C A are pure simplicial complexes of the same dimension, then we
write A\A to denote the pure simplicial complex generated by the facets of A that are not
facets of A. If A and I' are two simplicial complexes on disjoint vertex sets then their join,
denoted A = TI', is

AxT'={FUG:FeA, GeT}.

The join of A with a 0-dimensional simplex v is called the cone over A, and is denoted
v * A. For a simplicial complex A and a face F' € A, the star and the link of F' in A are
the following subcomplexes of A:

st(F,A)={GeA:FUG e A} and k(F,A)={Gest(F,A): FNG = 0}.

(If A is fixed or understood from context, we sometimes write st(F') and 1k(F) instead of
st(F,A) and 1k(F, A).) Thus, if v is a vertex of A, then st(v, A) = vx*lk(v, A). Finally, for a



simplicial complex A on V' and a subset W of V| we denote by A[W|={F e A:F C W}
the restriction of A to W. A subcomplex I' of A is induced if it is of the form A[WW] for
some W C V.

2.2 Simplicial polytopes

We now discuss some basics of polytopes. An excellent reference to this material is [28].

A polytope P is the convex hull of finitely many points in a Euclidean space. The
dimension of P is defined as the dimension of the affine hull of P. For brevity, we refer
to a d-dimensional polytope as a d-polytope. An example of a d-polytope is a (geometric)
simplex defined as the convex hull of d + 1 affinely independent points in R

Let P C R be a d-polytope. A supporting hyperplane L of P is any hyperplane in R¢
such that all points of P lie on the same side of L. A (proper) face of P is the intersection
of P with a supporting hyperplane. (This includes the empty face.) A face of a polytope
is by itself a polytope. A face F' of P is called an i-face if dim F' = i; O-faces are called
vertices and (d — 1)-faces are called facets. A polytope is simplicial if all of its facets are
simplices. The boundary complex of a simplicial d-polytope P, P, consists of the vertex
sets of all proper faces of P; this is a simplicial complex of dimension d — 1. For instance,
if o is a (geometric) d-simplex with vertex set V, then 9o = 9V.

A family of simplicial polytopes that plays a crucial role in this paper is that of cyclic
polytopes. Let d > 2 and let M : R — Rt — (¢,t2,...,t%) be the (d-th) moment
curve. Given any n > d + 1 distinct numbers t; < to < --- < t, in R, we define the
cyclic polytope, C(n,d), as the convex hull of the points M (t1),..., M (t,). The polytope
C(n,d) has several remarkable properties (see [28, Example 0.6]), including that it is a
simplicial d-polytope with n vertices whose combinatorial type is independent of the choice
of t1,ta,...,t,. For this reason, when talking about dC(n,d), we label the vertices by
elements of [n] = [1,n] := {1,2,...,n}, with i serving as a label for M (t;). Specifically,
the set of facets of C'(n,d) is completely characterized by the following result, known as
the Gale evenness condition:

Theorem 2.1. A d-subset T of [n] forms a facet of 0C(n,d) if and only if any two elements
of [n]\T are separated by an even number of elements from T. In particular, if d = 2k,
then every d-set of the form {i1 <i1+1<ia <ig+1<--- <ip <ir+1} C[n] is a facet
of 0C(n,d).

One immediate corollary is that 0C(n,d) is |d/2]-neighborly, that is, every |d/2]| ver-
tices of [n] form the vertex set of a face of dC(n, d).
2.3 Simplicial spheres

Via the notion of a geometric realization, one associates with a simplicial complex A a
topological space, denoted ||Al]: this space is built out of geometric simplices in a way that



every two simplices intersect along a common (possibly empty) face and the collection of
vertex sets of faces of ||All is A. We often say that A has certain geometric or topological
properties if ||A|| does. For instance, we say that A is a simplicial (d — 1)-sphere if ||A]] is
homeomorphic to a (d — 1)-dimensional sphere, and that A is a simplicial d-ball if ||A|| is
homeomorphic to a d-dimensional ball. As an example, V is a simplicial ball and 9V is a
simplicial sphere.

Assume A is a simplicial ball. Then every ridge of A is contained in at most two facets.
The boundary complex of A, 0A, is the pure (d — 1)-dimensional complex generated by
those ridges that are contained in a unique facet. The faces of A are called boundary
faces of A; all other faces of A are called interior faces. For instance, what we previously
denoted by 9V is indeed the boundary complex of V; here V is the only interior face of V.
As another example, if A and I' are simplicial balls with disjoint vertex sets, then A xI" is
also a simplicial ball and 9(A *T') = (OA xI') U (A % 9T").

The boundary complex of any simplicial polytope is a simplicial sphere. In light of this,
a simplicial (d — 1)-sphere is called polytopal if it can be realized as the boundary complex
of a simplicial d-polytope. It follows from Steinitz’ theorem that all simplicial 2-spheres
are polytopal; however, for d > 4, most of simplicial (d — 1)-spheres are not polytopal; see
[9, 12, 17, 24].

An important subclass of simplicial spheres and balls is the class of PL spheres and
PL balls. We say that A is a PL d-ball if A is PL homeomorphic to a d-simplex, while A
is a PL (d — 1)-sphere if it is PL homeomorphic to the boundary complex of a d-simplex.
For example, the boundary complex of a PL d-ball is a PL (d — 1)-sphere, and so is the
boundary complex of a simplicial d-polytope. If P is a simplicial polytope and A is a PL
ball such that 0P = 0A, then A is called a triangulation of P.

Let A be a PL (d — 1)-sphere. If A contains an induced subcomplex A * 9B, where A
and B are disjoint nonempty subsets of V(A) with |A| 4+ |B| = d + 1, then we can perform
a bistellar flip on A by replacing A x 9B with 0A x B. The resulting complex is again a
PL (d —1)-sphere. The following result due to Pachner [22] allows to easily search through
the space of PL spheres.

Theorem 2.2. [22] A simplicial complex A is a PL (d — 1)-sphere if and only if A can be
obtained from the boundary complex of a d-simplex by a finite sequence of bistellar flips.

It is worth noting that for d < 4, every simplicial (d — 1)-sphere is PL; however, for
d > 6 there exist simplicial (d — 1)-spheres that are not PL. (To the best of our knowledge,
the question of whether there exist simplicial 4-spheres that are not PL remains a major
open problem.) The reader is referred to [11, 15] for additional background on PL topology.

2.4 Transversal numbers and asymptotic notations

Let H = (V, E) be a hypergraph. A transversal of H is a subset T of V' that intersects with
all edges of H. The transversal number of H, T'(H), is the minimum size of a transversal



of H, and the transversal ratio of H is 7(H) :=T(H)/|V|.

Note that a pure (d—1)-dimensional simplicial complex A with vertex set V' is uniquely
determined by the d-uniform hypergraph H(A) = (V,F) where F is the set of facets of
A. We define the transversal number and the transversal ratio of A, T(A) and 7(A),
respectively, as the transversal number and the transversal ratio of the hypergraph H(A).

Transversal numbers of hypergraphs (or of associated pure complexes) are closely re-
lated to other well-studied invariants of hypergraphs. A (weak) independent set of a hyper-
graph H = (V, E) is a subset I of V' that contains no edge of H. The independence number
of H, a(H), is the maximum size of an independent set. A weak coloring x of H is an
assignment of colors to the vertices of H so that no edge is monochromatic. Equivalently,
the pre-image of any color is an independent set. We say that k is a strong coloring if the
restriction of k to any edge of H is an injective function. The weak chromatic number of
H, x(H), is the minimum number of colors in a weak coloring of H; the strong chromatic
number of H, xs(H), is defined analogously.

The following lemma is an immediate consequence of these definitions.

Lemma 2.3. Let v > 2. Let H be an r-uniform hypergraph with n vertices. Then
1. T(H)=n— a(H).
2. T(H)<n—n/xw(H) and T(H) < W
The classical theorem of Turan asserts that a graph G with n vertices and the average

vertex degree dg has an independent set of size at least n/(dg + 1); see [1, Chapter 41].
This theorem together with part 1 of the above lemma then implies

Corollary 2.4. Let d > 4 and let A be a pure (d—1)-dimensional complex with fo(A) =n

and f1(A)=10. Then T(A) <n— riand

Recall that the Four Color Theorem states that if A is a simplicial 2-sphere, then
Xs(H(A)) is at most 4. Together with part 2 of Lemma 2.3, this yields

Corollary 2.5. The transversal number of a simplicial 2-sphere A is at most %fo(A).

In this paper, we discuss the asymptotics of transversal numbers and transversal ratios
of various classes of pure simplicial complexes. Below we give a quick review of asymptotic
notations. Let f, g be two functions from the set of nonnegative integers to itself. We
say that g(n) = o(f(n)) if lim,—~ g(n)/f(n) = 0. Throughout, we use f(n) > g(n) and
g(n) = o(f(n)) interchangeably. We write g(n) = O(f(n)) if there is a positive constant
C such that g(n) < Cf(n) for all (sufficiently large) n; similarly, we write g(n) = Q(f(n))
if there is a positive constant ¢ such that g(n) > cf(n) for all n. Finally, we write g(n) =
O(f(n)) if g(n) = O(f(n)) and g(n) = Q(f(n)). Thus, g(n) = n — Q(f(n)) means that
there is a constant ¢ > 0 such that g(n) < n — cf(n) for all n, while g(n) = n — O(f(n))
means that there are positive constants ¢ and C such that n — Cf(n) < g(n) <n —cf(n)
for all n.



3 Transversal numbers of pure complexes

In this section we establish an upper bound on the transversal numbers of pure simplicial
complexes in terms of the number of vertices and the number of facets; see Theorem 3.1.
We then discuss constructions of pure complexes whose transversal numbers come close to
this bound. Along the way we briefly touch on Eulerian complexes and pseudomanifolds.

Theorem 3.1. Let d > 2 and let A be a pure (d — 1)-dimensional complex with n vertices
and m facets. Then for n sufficiently large, T(A) <n+1— %nm_l/d.

Proof: Let Vo = (0 and let Ag = A. For each 0 < i < n, we inductively define
Vigr = Vi Uiy and Ajpq := A[V(A)\V;41] by choosing v;11 € V(A)\V; in a way that
maximizes fg—1(4A;) — fa—1(Ai+1). Since

D faa(st(u, Ai)) = dfa_1(A),

it follows that fy_1(st(vit1,4;)) > df:‘l‘_l‘iﬁi), and hence that

Ja—1(Aig1) = fa—1(A¢) — fa—1(st(vig1, &) < fa—1(Aq) - <1 _ > :

n—i
We then conclude by induction on ¢ that for ¢ > d and n > ¢ + d,
(n—d)(n—d—-1)...(n—1i—d)
nn—1)...(n—1)
m—i—1)(n—i—2)...(n—i—d) ("

=m =m

nn—1)...(n—d+1) )

fi—1(Air1) <m

(3.1)

Since for all positive a and b, (a/b)’ < () < (ea/b)?, eq. (3.1) can be rewritten as

e(n—1— d
() <m0

. d
—3—1
:med<n ! ) .
n

It remains to note that V;y; is a transversal of A if and only if f;_1(A;4+1) = 0. Conse-
quently, T'(A) < i+ 1 where i is the smallest integer such that

A

m

. d
—i—1 1
(n ! ) < 7> or, equivalently, n —i—1 < —- nm~ 4,
n me e
The desired bound T(A) <n+1— énm_l/d follows. O



We recall Klee’s Upper Bound Theorem; see [13]. A simplicial complex A of dimension
d — 1 is Bulerian if Y(Ik(F,A)) = (=1)%1FI=1 for all F € A (including the empty face);
here x denotes the reduced Euler characteristic. For instance, all simplicial spheres are
Eulerian.

Theorem 3.2. Let d > 2 and let A be a (d — 1)-dimensional Eulerian complex with
n wvertices. Then for n sufficiently large, fi;(A) < fi(C(n,d)) for all i. In particular,
F1a(A) < 200472

Corollary 3.3. Let d > 2. Then for every (d — 1)-dimensional Eulerian complex A with
n wertices, T(A) < n —en'/? if d is even and T(A) < n — en(HD/Cd) if 4 s odd. Here
c > 0 is an absolute constant independent of n and d.

Remark 3.4. In [7, Theorems 1.3 and 6.7], it is proved that the weak chromatic number
of a simplicial d-polytope or a simplicial (d — 1)-sphere with n vertices satisfies x,, =
[(d=1)/2]—-1
O(n d-1 ) Hence the transversal number of a simplicial (d — 1)-sphere with n vertices
L[(d+1)/2]
is<n—n/xy = n—Q(n -1 ), regardless of the number of facets. This bound is slightly
better than the one in Corollary 3.3. On the other hand, the bound of Corollary 3.3 holds
for all Eulerian complexes rather than just simplicial spheres.

Our next goal is to construct pure complexes with transversal numbers close to the
bound in Theorem 3.1; see Corollary 3.7, Proposition 3.8, and Corollary 3.12. These
constructions are inspired by the Gale evenness condition.

Definition 3.5. Let £ > 1 be a constant. Consider any function s : N — N, n +— s(n),

such that s = o(n). For n sufficiently large, define Fg' 4 t6 be the following family of subsets
of [n]:

1. If d = 2k, then let

f?’d:{{il<i2<"'<i2k_1<i2k}: J1<f<s s. t.VlSjSk, Z'gj—igj_lzf}.

2. If d =2k + 1, then let

iokt1 — 2k < s and

d_ . . . . .
Fe _{{“<12< R R S B4 T ey

It follows that |Fi"¢| = (n;k) + (nfk) +- 4 (n?k) = O(sn¥) if d = 2k and, similarly,
|F| = O(s2nk) if d = 2k + 1.

Theorem 3.6. Let d > 2. The transversal number of the pure (d—1)-dimensional complex

with the set of facets given by Fd s at least n(l — SJ%I) — ks if d = 2k, and at least

n(1 — %) — 2ks if d = 2k + 1. Furthermore, Fir has a transversal of sizen — |

s+2 84?71J :



Proof:  Independently of whether d is even or odd, the complement of multiples of s + 1

in [n] is a transversal of Fi"% . Hence T(Fi%) < n — |54
For d = 2k, consider a transversal T of F2*? and let 7¢ = [n)\T = {ay < ag < - -+ < ap}.
Note that

(a2 —a1) + (a3 —a2) + -+ (ap — ap—1) = ap — a1 < n,

and so at least one of the following inequalities holds:
(ag —a1) + (ag —a3) +---<n/2, (az—az)+ (a5 —aq4)+---<n/2.

Assume w.l.o.g. that Z,EPZ/fJ (ask — agk—1) < n/2. Consider the multiset M = {as — a1, a4 —
as,...}. If some number 1 < /¢ < s appears in M at least k times, say,

l=agj, —agj;—1 =+ = ag;, — azj,—1,

then {agj,—1,a2;,,...,a2j,—1,a2;, } is an element of F4 that is disjoint from 7. Hence for
T to be a transversal, M must contain at most £ — 1 elements equal to ¢ for each 1 <t < s;
all remaining elements of M must be > s+ 1. Since the total number of elements in M is
lp/2] > n=ITI=1 it follows that

2
n [p/2]
5> (agk, —agk—1) > (k—1D(A+24+---+s)+(M|—(k—1)s)(s+1)
k=1
- n—1|T]—-1—(k—1)s)(s+1)
pu— 2 .
In other words, ;#5 >n —|T|—1— (k—1)s, and hence [T| > n(1 — 34%1) — ks.
Now consider the case of d = 2k+1. Again let 7 be a transversal of Fg’d, let 7¢ = {a1 <
az < --- < ap}, and consider the multiset M = {az —a1,...,ap —ap—1}. W.lo.g. assume

that p is odd. We call a pair {ag; —ag;—1, agi+1—ag; } large if agi+1—agi—1 > s+2, and call it
small otherwise. Since the sum of all elements of M is less than n, the number of large pairs
is at most 5. If there are at least (k —1)s+ 1 small pairs with x9;1+1 — z9;—1 < s+ 1 (in
particular, xo; — x2;—1 < s and x9;41 — T2; < ), then there exists an 1 < ¢ < s and indices
1 <tg < - - <1 such that L5 — T2 —1 =+ = T4, — T2,—1 = ¢ and T2 +1 — X2i, < s.
But then {x9;,_1,22,,...,%2,-1,%2i,, T2, +1} is an element of fsn’d that is disjoint from
T, contradicting our assumption that 7 is a transversal of Fg 4,

Hence the number of small pairs is at most (k — 1)s and @ < ((k —1)s+ ;—2) + 1.
Consequently,

2n 2
o — C> — —1 B > 1—7 — .
I T|=n—|T¢>n—-2(k—1)s STo 2_n( s—i—2) 2ks

This completes the proof. O
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The following result is an immediate consequence of Theorem 3.6 applied to the pure
complex whose facets are given by Fr 4 with s < /n. When s = /n, the transversal
number of the resulting complex almost matches the bound of Theorem 3.1.

Corollary 3.7. Fiz d > 2, and let s = s(n) be such that 1 < s < \/n. Then for all
sufficiently large n, there exists a pure (d — 1)-dimensional complex with n vertices and
O(nld/2g1+(d mod 2)y f4cets whose transversal number is n — O(n/s). In particular, there
d+1
2

exists a pure (d—1)-dimensional complex with n vertices and ©(n 2 ) facets whose transver-

sal number is n — O(n'/?).

Next we discuss two variations of this construction. The first variation complements

Corollary 3.7 and allows us to construct a pure (d — 1)-dimensional complex with n vertices
d+1 . .

and m < n 2 facets that has a relatively large transversal number. It is based on the
following simple idea. If A is a pure (d — 1)-dimensional complex with n vertices, then the
disjoint union of b copies of A, denoted by bA, has fo(bA) = bfo(A), fa—1(bA) =bfa—1(A),
and T'(bA) = bT'(A).

Given n,m and d, we choose b as some function b(n, m,d), to be specified below, and

we let s = \/n/b. Consider the (d — 1)-dimensional complex AP hose set of facets is

given by F/%4 Then bA™*? has n vertices and o- (n/b)(d+1)/2) facets; furthermore,

1
T(bA?/b’d) = b(n/b)(1 — O()) = n—O(n/s). Taking b = (”;Lzl)ﬂ ensures that the
resulting complex has ©(m) facets and implies the following result.

Proposition 3.8. Fiz d > 2. Then for n and m such that 1 < n €< m < n%, there
exists a pure (d—1)-dimensional complex with n vertices and ©(m) facets whose transversal

d 1
number is n — © (nﬂm_ﬁ). In particular, for all sufficiently large n, there exists a

pure (d — 1)-dimensional complex with n vertices and @(nLd/zJ) facets whose transversal
number is n — @(n(d/ﬂ/(dfl)).

Our second variation produces a family of odd-dimensional pseudomanifolds with large
transversal numbers. Recall that a pure complex is a pseudomanifold if every ridge is
contained in at most two facets.

Definition 3.9. Fix k£ > 2 and let n be sufficiently large. Let a, s be functions of n such
that a = o(n), s = o(%), and a,s > k. Partition n into a intervals of size as equal as
possible and denote these intervals by I, Iz, ..., I,. Let Hg  be the following collection of
sets

<t<
{{il,i1+f,...,ik,ik+g}; 1</<sand }

< <---<b, <a s.t. {ij,iijf}CijVlSjSk

Lemma 3.10. The pure complex with the set of facets given by Hy o is a (2k — 1)-
dimensional pseudomanifold with n vertices and m = ©(sn*) facets.

11



Proof:  Let G be a ridge. It must be of the form {i,i2,i3+¢, ... ik, i + £}, where for each
2 < j <k, {ij,i; + £} is a subset of one of the intervals. Assume w.l.o.g. that i € I;. If
i < /¢, then G is contained in a unique facet GU{i+¢}. If max I} — ¢ < i < max I, then G
is contained in a unique facet G U {i — £}. Otherwise, G is contained in exactly two facets
GU{i— ¢} and GU{i+ ¢}. Hence the complex is a (2k — 1)-dimensional pseudomanifold.
The number of facets is © (s(})(n/a)¥) = O(sn"). O

Proposition 3.11. Consider a,s such that a = Q(slns) and s = o(n/a). Then the
transversal number of the complex with the set of facets given by Hy s is n — O(n/s).

Proof: The complement of multiples of s+ 1 in [n] is a transversal; hence the transversal

number is n — Q(n/s). To see that the transversal number is n — O(n/s), let T be a
transversal and let 7; = T N 1;. We let T¢ = ([n ]\T) NI and write it as T = () <2 <
- < xi;j}. Consider the multiset M; = {xé xl, .. x]]oj pj— 1} and let m; = min M;.

First we claim that for every 1 <t < s, at most k —1 of m;’s are equal to t. Indeed,
if for some ¢ there are at least k of them, then there exist 1 < j; < jo < -+ < ji < a and
i, xffe_l € 7;? such that
Jk
up—1°

J1

— J1 L= e _
l=xy, — %y, 1 = =Ty, —T

But then F' = {:1cu1 1,3:{}1, e xi’; 1,xuk} is an element of H ; disjoint from T, contra-
dicting our assumption that 7 is a transversal of the complex.
Hence for all but < (k — 1)s intervals I, m; > s + 1. As the sum of all elements of

M; is at most n/a, it follows that for each of these intervals, |M;| < Consequently,
TA < 5 s+1) + 1 and hence [7;| > n/a — [T > 2 — a(s+1) -1

— a
Similarly, for each of at most k£ — 1 1ntervals I; with m; = t < s, the size of 7 is

> 2(1 — 1) — 1. Thus,
IT1=>_IT
j=1

> (0 (k- 1)s) (Z—a(:m%)ﬂk—l); (Za--1)
1
3

()

a s+1)

Since a = Q(slns) and s = o(n/a), it follows that %lns = O(%) and a = o(n/s). The
above inequality then completes the proof. O

Letting a = y/n and s = LZ, we obtain

In
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Corollary 3.12. Let k > 2 be a constant. Then for all sufficiently large n, there exists

k+1/2
") facets, and

a (2k — 1)-dimensional pseudomanifold 1" with n vertices, m = O(

T(II") =n —O(y/nlnn).

4 Transversal ratios of polytopes

The goal of this section is to introduce a new family of simplicial polytopes and use it to
show that for all k& > 2, TQIZ 41 = 2/5. These polytopes could be considered as “siblings”
of cyclic polytopes. Their construction relies on sewing — a powerful tool introduced by
Shemer [25] that amounts to inductively constructing polytopes by adding one vertex at a
time. Thus, our first task is to define this operation.

Given a simplicial d-polytope P in R? and a facet F of P, let Hp = aff(F) be the
supporting hyperplane that defines F' and let H, (Hj., resp.) be the open half-space
determined by Hp that contains the interior of P (is disjoint from P, resp.). We say that a
point p € R4\ P lies beneath F if p € Hp, and that p lies beyond F if p € Hbf We also say
that p lies exactly beyond a set of facets F if p lies beyond every facet in F and beneath
all other facets of P.

Given a flag of faces F1 C F» C --- C Fy in P, let

I = st(F))\ (st(E\ (.. \ (st(Frm1)\st(F)) ...))

be a subcomplex of P, where the stars are computed in dP. (For instance, if ¢ = 3, then
I = st(F1)\ (st(F2)\st(F3)) while if £ = 4, then I' = st(F)\ (st(F2)\ (st(F3)\st(F4))).) It
is shown in [25, Lemma 4.4] that there exists a point p that lies exactly beyond the facets
of I'; hence we can sew this point p onto P to construct a simplicial polytope conv(P U p)
whose boundary complex is obtained from 9P by replacing I with OT % p.

To introduce our new family of simplicial polytopes, we need to review some properties
of the cyclic polytopes. This requires the following definition of simplicial complexes that
were considered, for instance, in [6], [12], and [20].

Definition 4.1. Let £ > 0 and 1 < a < b < n. Define B([a,b],2k — 1) to be the pure
simplicial complex of dimension 2k — 1 generated by the following facets

{{i1,i1 + Ly io + 1, . i, i + 1} ta <idpyin + 1 <idgy..yip—1 + 1 <ip <b—1},

and define B([a, b], 2k) := B([a,b—1],2k—1)*b. (Thus, B([a,b], —1) = {0} and B([a,b],0) =
b.)

The following lemma summarizes several properties of the cyclic polytopes. All parts of
the lemma follow easily from the Gale evenness condition (see Theorem 2.1) and Definition
4.1; see also the proof of [20, Theorem 2.4]. Recall that if B is a PL d-ball, then an interior
face of B is any face that is not a face of 0B. A PL d-ball B is called i-stacked (for some
0 < i < d) if all interior faces of B are of dimension > d — i. For instance, any simplex is
0-stacked; 1-stacked balls are also known in the literature as stacked balls.
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Lemma 4.2. Letd>1 andn >d-+ 1. Then
1. B([1,n],d) is a subcomplex of 0C(n,d+1). In fact,
aC(n,2k) = B([1,n],2k —1)U ({1,n} « B([2,n — 1], 2k — 3)) , and
0C(n,2k—1) = (1xB([2,n],2k—3))U(B([1,n—1],2k —3) xn).

2. Let Fo=0,Fy ={n},Fo={n—1,n},...,Fopr1 ={n—2kn—2k+1,...,n}. Then
ford=2k -1,

B([1,n], 2k — 1) = st(Fo)\ (st(F)\ (- .\ (st(Fap_1)\st(Fax)) -..)) ,

where the stars are computed in OC(n,2k), while for d = 2k,

B([1,n], 2k) = st(F1)\ (st(F2)\( ...\ (st(Far)\st(Faxs1)) ---))

where the stars are computed in 0C(n,2k + 1). In particular, B([1,n],d) is a PL
d-ball for all d.

3. B([1,n],d) is [d/2]-neighborly [d/2]-stacked.

4. 0B([1,n],d) =lk(n+1,0C(n+1,d+ 1)) = 0C(n,d). In other words, B([1,n],d) is
a triangulation of C(n,d). Furthermore, when d > 2, C(n + 1,d) is obtained from
C(n,d) by sewing a new vertex n+ 1 onto C(n,d) so that it is placed exactly beyond
the facets of {1,n} x B([2,n — 1],2k — 3) if d = 2k and exactly beyond the facets of
B([1,n —1],2k = 3) *n if d = 2k — 1.

We are now in a position to discuss a generalization of B([1,n],2k—1). By an interval in
[n] of size i we mean a subset of [n] consisting of i consecutive integers. For J = (j1,. .., jm),

let ||J]| == >_5%y -
Definition 4.3. Let J = (j1,...,Jm) where each j; > 2 and ||J|| = d+ 1. For n > d, define

I'J as the d-dimensional complex generated by all facets of the form I = I[; U, U---U I,
where I, ..., I,, are pairwise disjoint intervals in [n] of sizes ji, ..., jm, respectively, and

each I; lies to the left of 1;11.

For instance, if J is a k-tuple (2,2,...,2), then I'J is B([1,n],2k — 1). We will see that
several properties of B([1,n],2k — 1), such as neighborliness and stackedness, continue to
hold in the generality of T'). The proof will rely on the following standard lemma (see [18,
Lemma 2.2]).

Lemma 4.4. Let By and By be m-stacked PL d-balls. If By N By C 0B1 N 0By C 0B is
an (m — 1)-stacked PL (d — 1)-ball, then By U By is also an m-stacked PL d-ball. Further,
if B is a p-stacked PL ball with V(By) NV (B) =0, then By * B is an (m + p)-stacked PL
ball.
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Lemma 4.5. Let J = (j1,...,Jm) with ||J|| = d+ 1 and all j; > 2. Then for alln > d,
I‘;{ is an m-neighborly m-stacked PL d-ball.

Proof: By definition, I/ is m-neighborly. We prove by induction on both m and the
number of vertices n that I'/ is an m-stacked PL d-ball.

First, when m = 1, the collection of facets is given by {{z, i+1,...i+d—1,i+d} : 1 <
1<n-— d}, and hence I'/ is a stacked ball. Similarly, when n = d+ 1, I'/ is the d-simplex,
and hence the claim also holds. A

Let J = (j1,j2. - jm-1). Then T, = TJ U ({n—jm+2,...,n+1}*rg_jmﬂ).
Note that by induction on n, Fi is an m-stacked PL d-ball, and by induction on m,
{n—gm+2,....,n+ 1} Fi_jmﬂ is an (m — 1)-stacked PL d-ball. Furthermore, by defi-
nitions (and since n + 1 is not a vertex of I';)),

I‘;iﬂ<{nfjm+2,...,n+1}*F7{_jm+1> :{nfjmjLQ’”.’n}*Fi_ij'

By Lemma 4.4, this join is an (m — 1)-stacked PL (d — 1)-ball. Since it is contained in OI'
and also in 8({n —Jm+2,...,n+ 1} Fi_jmﬂ), another application of Lemma 4.4 shows
that I’;Lrl is an m-stacked PL d-ball. O

We are ready to define the promised “sibling” of the cyclic polytope. We start by
defining it as a simplicial sphere, and then show in Lemma 4.10 that it is indeed the
boundary of a polytope.

Definition 4.6. Let d > 4. Let J = (2,2,...,2,3) when d is even and J = (2,2,...,2,4)
when d is odd, where in both cases ||.J|| = d+ 1. For all n > d, define D(n,d — 1) to be the
boundary complex of the PL d-ball I'). In particular, D(n,d — 1) is a PL (d — 1)-sphere.

According to the above definition, the facets of D(n,d — 1) are those ridges of I'/ that
are contained in a unique facet of I'/. Using the definition of T’/ then easily implies the
following lemma, which provides the complete set of facets of D(n,d — 1) (cf. the Gale
evenness condition).

Lemma 4.7. If k > 2 and n > 2k + 1, then the set of facets of D(n,2k — 1) is given by
1. 7 U{ig, ik + 2}, where 7 € B([1,i — 1],2k — 3) and i, <n — 2,
2. tU{n —1,n}, where 7 € B([1,n — 2|,2k — 3),
3. TU{Ll, ik, ik + 1,0 + 2}, where T € B([2,ix — 1],2k — 5) and i, < n — 2.

Similarly, if k > 2 and n > 2k + 2, then the set of facets of D(n,2k) is given by

1. 7 U {ig,ix + 1,ig + 3}, where 7 € B([1,ix — 1],2k — 3) and i, <n — 3,
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2. 7 U{ig, i + 2,1, + 3}, where 7 € B([1,i — 1],2k — 3) and iy, <n — 3,
3. TU{n—2,n—1,n}, where 7 € B([1,n — 3],2k — 3),
4. TU{L ik, i + 1,0 + 2,4 + 3}, where 7 € B([2,i — 1],2k — 5) and i, < n — 3.

The following result further emphasizes similarities between D(n,d — 1) and 9C(n,d).
It is an immediate consequence of Lemma 4.7 (along with Lemma 4.2).

Lemma 4.8. For all k > 2,
k({n —1,n},D(n,2k —1)) = 0C(n—2,2k—2), and
Ik({n —2,n—1,n},D(n,2k)) = 9C(n— 3,2k —2).

Note that for any d, D(d + 1,d — 1) is a (d — 1)-sphere with d + 1 vertices; hence it
is the boundary of the d-simplex. We are now ready to show that, similarly to the cyclic
polytope, D(n + 1,d — 1) is obtained from D(n,d — 1) by sewing.

Lemma 4.9. For d >4 andn > d, define

{n—1,n}x B([1,n — 2],2k — 3) if d =2k
{n—=2,n—1,n}*B([1,n—3],2k—3) ifd=2k+1.

K(n,d—l)—{

Then D(n+1,d—1) is the complex obtained from D(n,d—1) by replacing K(n,d—1) with
OK(n,d—1)*(n+1).

Proof:  Assume d = 2k and let J = (2,...,2,3) where ||.J|| = 2k + 1. As we saw in the
proof of Lemma 4.5,

T =T U (e =T+ 13+ B([Ln = 2),2k = 3)) = T5 U (K (n,2k — 1) = (n + 1))
(4.1)
while T;) N (K (n,2k — 1) x (n + 1)) = K(n,2k — 1). The claim follows by computing the
boundary complexes of the balls on the left- and right-hand sides of (4.1). The proof in
the case of d = 2k + 1 is similar. O

Lemma 4.10. The complex D(n,d — 1) is the boundary complex of a simplicial polytope.

Proof:  Let k = |[(d+1)/2], and let F; = {n —1,n}, Fo = {n—2,n—1,n}, ...,
Fop 1 ={n—-2k+1,...,n}, For, = {n —2k,...,n}. It follows from Lemmas 4.2 and 4.9
that

St(Fl)\ (St(FQ)\( - \(St(FQk_Q)\St(FQk_l)) - )) if d =2k

Klnd=1)= {St(Fg)\ (sE(E\(- - A\ (st (Fon-1)\st(Fop)) ) if d =2k = 1;
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here the stars are computed in D(n,d — 1). The polytopality of D(n,d — 1) is then a
consequence of [25] and Lemma 4.9: indeed, to obtain D(n,d — 1), we start with (the
boundary of) the d-simplex (which is a simplicial polytope), and at each step we are sewing
a new vertex whose position in R? is determined by a flag; that is, we are performing an
operation that, according to [25, Lemma 4.4] preserves polytopality. O

Returning to the topic of transversal numbers, we note that as follows from Lemma
4.7, the sets {1,3,5,7,...} N [n] and ({1,2,6,7,11,12,...} N [n]) U {n} are transversals of
D(n,2k —1) and D(n,2k), respectively, and so 7(D(n,2k — 1)) < 1/2 while 7(D(n, 2k)) <
2/5. In fact, the description of facets from Lemma 4.7 implies the following result.

Lemma 4.11. For k > 2, T(D(n,2k — 1)) = 2 — O(1) and T(D(n,2k)) = 2% — O(1).

Since the proof of Lemma 4.11 is very similar to that of [21, Proposition 6.11] (see also

the proof of Lemma 5.10 below), we only sketch the proof, and we only consider the case
of D(n,2k).
Proof (Sketch):  Consider a transversal T of D(n,2k). We are interested in the sizes of
maximal w.r.t. inclusion intervals [i,j] = {i,i+ 1,...,j} contained in T and T¢ = [n]\7T,
respectively. To avoid any possible confusion, we note that the size of [i,j] is j — i + 1.
The facets of D(n,2k) are described in Lemma 4.7. Using the facets of type 1 and 2, one
proves the following claims:

1. The union of all intervals of size > 4 in T¢ has cardinality O(k).

2. The number of singleton intervals of T that are followed by a non-singleton interval
of T¢is < k.

These claims then imply that there exists a set C' C [n] of size O(k) such that [n]\C is the
disjoint union of pairs of adjacent intervals (I,.J), where I C T, J C T¢, and each pair
(I,J) satisfies (a) |I| =2,|J| =3 or (b) |I| > |J| > 1 or (¢) J = (. This yields the desired
bound T(D(n,2k)) = 2 — O(k). O

Since by Lemma 4.10, D(n,d — 1) is the boundary complex of a polytope, Lemma 4.11
yields the promised lower bound on 7'212, e

P <1 P 2
Theorem 4.12. For k > 2, 75, > 5 and Tops1 2 5
We close this section with several remarks.

Remark 4.13. Comparing the transversal numbers of D(n,2k) and 0C(n, 2k + 1), which
are 2?" — O(1) and 2, respectively, we conclude that for n sufficiently large, these spheres
are not combinatorially equivalent. Similarly, for n sufficiently large, D(n,2k — 1) and
0C(n,2k) are not combinatorially equivalent either. This can be seen by observing that
the links of (2k — 3)-faces of 9C(n, 2k) are either 3-, 4-, or (n — 2k +2)-cycles. On the other
hand, the link of any F' = {ia,i2+1,...,95_1, k-1 +1, 0%, ix+2} C [2,n—2] in D(n,2k—1)
is a cycle that contains all the vertices in [1,) + 4] except for those in F' and it + 3. (In
fact, as was checked with Sage, D(8,3) and 0C(8,4) are already non-isomorphic.)
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Remark 4.14. Our definition of D(n,d) was originally conceived by looking at a certain
family A? of centrally symmetric (cs, for short) [d/2]-neighborly d-spheres [18, 19]. The
vertex set of the complex A? is {£1,...,4n}, and we refer to a face of A? as positive if it
is a subset of [n]. In the case of d = 3 and 4, the complete list of positive facets of A is
known; see [19, Lemma 3.1] and [23, Theorem 5.13]. Specifically, the list of positive facets
of A3 consists of

{i,i+1,0,0+2} for1<i<i+1<l<n-—2)and {i,i+1,n—1,n} (for 1 <i<n-—3).

These facets form a 2-neighborly 2-stacked 3-ball that is a subcomplex of D(n,3). The
remaining facets of D(n,3) are {1,¢,¢ + 1,¢/ 4+ 2} for 2 < ¢ < n — 2, and they form a
1-stacked 3-ball. Similarly, the list of positive facets of A} consists of the following subsets
of [n]:

{i<i+l<l<l+1<i43}{i<i+l<l<l+2<l+3}{i<i+l<n—-2<n—1<n}

These facets form a subcomplex of D(n,4); the remaining facets are {1,¢,¢+1,(+2,(+ 3}
for 2 < ¢ < n — 3, and they again form a 1-stacked 4-ball. In other words, for d = 3,4, the
subcomplex of the cs-[d/2]-neighborly d-sphere A¢ generated by the positive facets can be
completed to a non-cs [d/2]-neighborly d-sphere D(n,d).

5 Transversal ratios of spheres

The goal of this section is to construct spheres of dimensions 3, 4, and 5 with larger
transversal ratios than the current record. One approach to do so is as follows. Start
with a PL (d — 1)-sphere A with a relatively large transversal ratio (such as 9C(n,2k)
or D(n,2k)). Then apply a sequence of bistellar flips, or local retriangulations, to ensure
that the resulting complex (another PL sphere, by Pachner’s theorem) has an even larger
transversal ratio. We flesh out the details of this approach in Section 5.1. Then in Sections
5.2 and 5.3 we provide specific constructions.

5.1 Retriangulations

Let A be a PL (d—1)-sphere. A local retriangulation of A is defined as follows. Consider a
collection of PL (d—1)-balls B in A (each with a small number of vertices) that are pairwise
vertex-disjoint. For each B € B, find a new PL (d — 1)-ball B’ such that 9B’ = 0B; we
call such B’ a retriangulation of B. Let A’ be obtained from A by replacing each B € B
with the corresponding B’. If A’ is a PL (d — 1)-sphere, then we say that A’ is a local
retriangulation of A. (For example, any complex obtained from A by a bistellar flip is
a local retriangulation of A.) In order to guarantee that A’ is a PL sphere, some mild
restrictions on the balls in B are needed. Omne set of such restrictions is given by the
following simple lemma whose proof we omit.
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Lemma 5.1. Let A be a PL (d—1)-sphere, let B C A be a PL (d—1)-ball, and let K be a PL
(d—1)-ball such that 0K = OB and, in addition, V(K) =V (B) or V(K)NV(A) = V(0K).
If B is an induced subcomplex of A, then K N (A\B) = 0K. In particular, replacing B
with K in A results in a PL (d — 1)-sphere.

In the case of d = 2k, let A = 0C(n, 2k) and consider a family of disjoint PL (d—1)-balls
B = {B(lai, bi], 2k — 1) : [a;,b;] € [1,n],b; —a; > 2k} in A. Since (as follows from the Gale
evenness condition) each B([a;, b;],2k — 1) is an induced subcomplex of OC(n, 2k), Lemma
5.1 applies. It remains to find appropriate retriangulations of B([a;, b;], 2k—1) that increase
the transversal ratio of the resulting complex. (Recall that 7(0C(n,2k)) = 1 —o(1).) Some
sufficient conditions guaranteeing such an increase are given in the following lemma and
remark. To simplify notation, for F' = {i1,...,ix} C [n], welet F+j = {i1+J,...,ix+7}.
We also define A+i={7+i:7¢€ A}

Lemma 5.2. Assume A,, is the pure (2k—1)-dimensional complex on vertex set [(4k—1)n]
whose set of facets consists of

1. dall facets of B([1,(4k — 1)n|,2k — 1) except for the facets of the following n balls:
B([1,4k — 1],2k — 1) + (4k — 1)m, where 0 < m <mn —1;

2. the sets {1,3,...,4k — 1} + (4k — 1)m, where 0 < m <n — 1.

Then limy, o0 T(Ay) = 7225

Proof: Consider the set

n—1
{13, 4k — 1} + (4k — D)m.
m=0

It forms a transversal of A,, and hence 7(4,) < %.

Now, let 7, be any transversal of A,,. For 0 < m < n — 1, consider the interval
Iy, = {1,2,...,4k — 1} + (4k — 1)m. Call the set I,,\7, bad if it contains a pair of
consecutive elements. Note that at most k& — 1 of the sets Ip\7y, ..., In—1\7y could be bad:
if there were k bad sets, then the union of k pairs of consecutive elements, one from each
bad set, would form a facet of type 1 that is disjoint from 7,. In addition, facets of type
2 guarantee that I, N 7, must contain at least one odd integer if m is even, and at least
one even integer if m is odd. This implies that at least n — (k — 1) of the sets I,,, N T, have
size > 2k. Thus

T % (. k-1\ 2%
A= o\ ) T oW

The lemma follows. O
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Remark 5.3. Let A/, be the pure (2k — 1)-dimensional complex on vertex set [4kn| whose
set of facets is given by (1) all facets of B([1,4kn], 2k — 1) except for the facets of the balls
B([1,4k],2k — 1) + 4km, where 0 < m < n —1, and (2) the sets {1,3,5,...,4k — 1} +4km
and {2,4,6,...,4k} + 4km, where 0 < m < n — 1. Then a proof similar to the one above
shows that lim,, o 7(A,) = %.

We are interested in whether a complex A as in Lemma 5.2 or in Remark 5.3 can be
completed to a simplicial sphere (or even the boundary of a simplicial polytope) of the
same dimension and on the same vertex set as A. In view of Lemma 5.1 and part 4 of
Lemma 4.2, this leads to

Question 5.4. Let k > 2.
1. Is there a triangulation of C(4k — 1,2k — 1) that contains the facet {1,3,...,4k—1}7

2. Is there a triangulation of C'(4k,2k —1) that contains the facets {1,3,...,4k—1} and
{2,4,...,4k}?

5.2 Dimensions 3 and 5

When k = 2, the answer to both parts of Question 5.4 is yes.
For part 1, consider the complex L7 generated by the facets

{1,2,3,7},{1,3,4,5},{1,3,5,7},{3,4,5,7},{1,5,6, 7}.

It is a simplicial 3-ball with vertex set [7] whose boundary complex coincides with that
of 0B([1,7],3) = 0C(7,3). Thus L7 is a desired triangulation of C(7,3), and Ly 4+ i is a
retriangulation of B([1 + 14,7 +],3) = B([1,7],3) + for all i. Lemmas 5.1 and 5.2, along
with the observation that {1,3,5,7} is a transversal of Ly, then imply

Theorem 5.5. Let A, be the complex obtained from 9C(n,4) by replacing each of the balls
B([1,7],3) + Tm, where 0 < m < n/7—1, with Ly + Tm. Then A, is a PL 3-sphere and
lim,, 00 7(Ay) = 4/7. In particular, Tf >

e~

For part 2, consider the complex Lg generated by the following facets (in a shelling
order):

{2,5,3,7},{2,5,7,6},{2,5,6,4},{2,5,4, 3},
{1,2,3,7},{2,6,7,8},{1,2,7,8},{1,3,5,7},{2,4, 6, 8},
{1,5,6,7},{2,3,4,8},{1,3,4,5},{4,5,6,8}.

It is a shellable ball with vertex set [8]. The boundary complex of Lg is generated by the
facets {1,2,8},{1,7,8}, and {1,4,i+ 1} and {4,i + 1,8} for all 2 <4 < 6. In other words,
0Lg coincides with that of dB([1,8],3) = 0C(8,3). In particular, Lg is a triangulation of
C'(8,3), and hence for any i, Lg+1i is a retriangulation of B([1+1,8+1],3) = B([1, 8], 3)+.
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The same argument (but using Lemma 5.1 and Remark 5.3) implies that if we start
with dC(n,4) and replace each B([1, 8],3)+8m, where 0 < m < n/8—1 with Lg+8m, then
the resulting complex is a PL 3-sphere whose transversal ratio is 9/16 — o(1) as n — oo.

To close this section, we show that part 1 of Question 5.4 also has an affirmative answer
when k£ = 3. Below we provide a particular shelling order of one of the triangulations of
C(11,5) (this shelling order was generated by Sage):

{1,2,3,4,5,11},{1,2,3,5,7,11},{2,3,5,6,7,11},{1,2,3,5,6, 7}, {1,2,3,7,9, 11},
{1,2,7,8,9,11},{1,3,4,5,10,11},{1,2,5,6,7,11},{1,3,5,7,9,11},{1,3,5,9, 10, 11},
{1,5,7,9,10,11},{1,5,6,7,10,11},{1,5,6,7,9,10},{1,7,8,9,10,11},{3,4,5,9, 10, 11},
{3,4,5,7,9,11},{5,6,7,9,10,11}, {3,4,5,6,7,11},{1,2,3,9,10, 11}, {1,3,4,5,9, 10},
{1,2,3,7,8,9},{1,3,5,7,8,9},{3,4,5,7,8,9},{1,3,4,5,8,9},{2,3,7,8,9,11},
{1,5,6,7,8,9},{1,3,4,5,7,8},{1,3,4,5,6,7},{3,4,7,8,9,11}, {4,5,7,8,9,11},
{5,6,7,8,9,11}.

Denote the above complex by Lji;. It is not hard to check that every ridge of Li;
is contained in at most two facets. Together with the fact that the above ordering is a
shelling, we conclude that Li; is a PL 5-ball. Furthermore, one can check that dLi; =
0B([1,11],5) = 9C(11,5). Since L1y contains {1,3,5,7,9,11} as a facet, Lemma 5.1 and
Lemma 5.2, along with the observation that {2,4,6,8,10,11} is a transversal of Lj;, yield

Theorem 5.6. Let I1,, be the complex obtained from OC(n,6) by replacing each of the balls
B([1,11],5) + 11m, where 0 < m < n/11 — 1, with Li; + 11m. Then II,, is a PL 5-sphere
and limy, o 7(Il,,) = 6/11. In particular, Tég > 1%.

5.3 Dimension 4
The goal of this section is to prove the following result:

Theorem 5.7. 75 > 1.

Our strategy is to apply sequences of bistellar flips to the family of PL spheres, D(n,4),
introduced in Section 4. This will require the following lemma and definition.

Definition 5.8. Let I';, g = D(n,4). Assume that for a fixed £k > 0 and for all k+2 < i <
n—>5, the set {i —k — 1,94+ 1,7+ 5} is not a face of Iy, , while the set {¢ — k,i+ 2,7+ 4}
is a face of I', 1, and furthermore, that

st({i —k,i+2,i+4},Tpp) ={i—k,i+2,i+4}«0{i —k—1,i+1,i+5}.

Note that no two such stars share a common facet. Hence we can apply bistellar flips
simultaneously to all stars st({i — k,i 4+ 2,44+ 4},T', %) for k+2 < i < n —5. We define
[y, k+1 to be the resulting complex.
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This definition is justified by the following lemma.

Lemma 5.9. For alln > 6 and all0 < k <n —6, the complex I'y, }. satisfies the following
properties.

1. Each of the following sets is a facet of I'y, -

(a) {i,i+1,j,7+1,7+3}, wherei >1 andi+k+1<j<mn-—3;

() {i,i+1,5,7+2,7+3}, wherei>1andi+k+2<j<n-—3;

(c) {i—kyi+1,i+2,i+4,i+5}, wherek+1<i<n-—25;

(d) {i—€i—0+1,i+1,i+4,i+5}, wherel <l <k andl <i<n->5.
2. Forallk+2<i<n-5,{i —k,i+2,i+4} is a face of I',, ;, and

st({i —k,i+2,i+4},Tpp) ={i—k,i+2,i+4rx0{i —k—1,i+1,i+5}.

3. Forallk+2<i<n-5,{i—k—1,i+1,i+5} is not a face of I'y, .

Note that the collection of sets in part 1(d) of this lemma is empty when k& = 0.
Proof: ~ The proof is by induction on k. That I', g = D(n,4) satisfies these properties
follows from Lemma 4.7.

Assume that the statement holds for some k < m. To verify that the properties continue
to hold for I', ,,,41, note that when applying bistellar flips to I';, ;,, we replace the facets

{i—m—1,i—m,i+1,i+2,i+4}, {i—-m—1,i—m,i+2,i+4,i+5}, {i—m,i+1,i+2,i+4,i+5}
with the facets
{i—-m—1,i—m,i+1,i42,i+5}, {i—m—1,i—m,i+1,i4+4,i+5}, {i—m—1,i+1, 142, i+4,i+5}

for all m 42 < ¢ <n — 5. All other facets of I, ;,, remain facets of I', ;1. This implies
that the first property continues to hold.

Since, in addition to {i —m — 1,i + 1,7 + 2,7 + 4,7 + 5}, the complex I, ;41 has
{i—-m—-2i—-m—-1,i+1,i+2,i+4}and {i—m —2,i—m—1,i+2,i+4,i+ 5} as its
facets, we conclude that the second property also holds, that is,

st({i —m —1,i+2,i+4},Tpmyr) =i —m—1L,i+2,i+4}«0{i —m —2,i+ 1,0+ 5}

Finally, to see that the third property holds, note that by Lemma 4.7, {i —m — 2,i +
1,i+5} ¢ I'y 0 = D(n,4). The bistellar flips replace all 2-faces of the form {i—¢,i+2,i+4}
with {i —¢—1,i+1,i+ 5}, for all £ and 7 such that 0 </ <m and £+ 2 <i <n—5, but
do not introduce any other 2-faces. Hence {i —m — 2,0+ 1,i +5} ¢ 'y, pop1. g

The significance of the complexes I';, ;; is explained by the following lemma. The be-
ginning of the proof of this lemma is similar to that of [21, Proposition 6.11].
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Lemma 5.10. Let k > 1. Then liminf, o 7(Tpp) > 5ot4s

Z 2(k+5)"
Proof: Consider a transversal 7 of I',, ;. We are interested in the sizes of maximal
w.r.t. inclusion intervals [i,j] = {i,i 4+ 1,...,j} contained in 7¢ and T, respectively. We

start by establishing the following claims. (To avoid any possible confusion, we note that
the size of [i,j]is j —i+1.)
Claim 1: No interval in 7¢ can have size > 7.

If [j,7+6] C T¢ for some j, then {j,j+1,j+2,j+5,j+6} is a facet of I';, ; (see Lemma
5.9 part 1(d)). However, this facet is disjoint from 7, contradicting our assumption that
T is a transversal. O

Claim 2: There exists a subset [a,b] C [n] with b —a < k + 4 that contains all intervals
of T¢ of size > 4.

If 7¢ contains at most one interval of size > 4, then since k > 1, the result follows from
Claim 1. Otherwise, let [i,7 + p] and [j,j + g] be the left-most and the right-most such
intervals (and so p,q > 3). We must have j +¢—i < k+4, orelse {i,i+ 1,7 +q— 3,5+
q— 2,7+ q} would satisfy (j +¢—3) —i > k + 1, and hence (by Lemma 5.9 part 1(a)) it
would be a facet of I, 5, that is disjoint from 7. The claim follows. O

Claim 3: Let {i1},...,{i,} be the list of all maximal intervals in 7 of size 1, each of which
is followed by an interval in 7€ of size > 2. Then ¢, — i1 < k + 4.

If {i1},...,{ip} are such intervals with iy < --- < i, and i), — iy > k + 4, then F :=
{iy + 1,41 + 2,4, — 1,ip + 1,4, + 2} is contained in 7¢ However, (i, — 1) — (i1 +1) =
(ip —i1) —2 >k +2, and so (by Lemma 5.9 part 1(b)) F is a facet of I, , that is disjoint
from 7T, contradicting our assumption that 7 is a transversal. O

Let C' C [n] be the union of the following sets:
e the smallest interval [a,b] from Claim 2 that contains all intervals of T of size > 4;

e the smallest interval that contains all {i1},...,{i,} from Claim 3, together with the
interval from 7° that trails {i,};

e if 1 € 7€, then also the left-most interval of 7°¢.

The above three claims guarantee that |C| = O(k), and by the definition of C, [n]\C'is the
union of at most three intervals. Each such interval [z,y] can be written as the disjoint
union of pairs of adjacent intervals (I, .J) such that I C 7, J C T¢, and each pair (I, .J)
satisfies (a) |I| = 2, |J| = 3 or (b) |I| > |J| > 1. (We also allow J = () for the last pair
(I,J) of [z,y]). This already implies that |7| = 2n/5 — O(k), which is a weaker bound
than the one promised in the statement. To improve this bound we make use of the facets
of I';, ; described in Lemma 5.9 part 1(d).

For convenience, we say that a pair (I,J) is of type (|I|,|J|). As above, consider the
interval [x,y] (which is one of at most three intervals comprising [n|\C). Assume that
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I={iyi+1}and J ={i+2,i+3,i+ 4} form a pair (I, J) of type (2,3) in [z, y], and let
I'={j,j+1}and J = {j+ 2,5+ 3,5 + 4} be the nearest pair of type (2,3) to the right
of (I,J) in [z,y]. (The case where (I,.J) is the right-most pair of [x,y] of type (2,3), and
so no such (I, J') exists, is discussed at the end of the proof.) Here I, I’ are subsets of T,
while J and J' are subsets of 7¢, and j —1 € 7¢ with j —1 > ¢ + 4. Consider the set
F:={i+2,i+3,7—1,j+2,7+ 3}. This set is disjoint from 7, so it is not a facet, which
by Lemma 5.9 part 1(d) means that we must have (j —1) — (i +3) > k + 1.

Consequently, the interval [i + 5,7 — 1] has size X > k and, by our assumption that
there are no pairs of type (2,3) in this interval, it follows that [i + 5,j — 1] is a disjoint
union of pairs as in (b), i.e., pairs (I,.J) with |I] > |.J| > 1. In particular, at least half of
the elements of the interval [i + 5,j — 1] are in T. Therefore,

|Tm[i,j—1]y>2+X/2_ X+4 1 1 1 o1 - 1 ‘
X+5 kE+5

-2

i, =1 ~ 5+X  2(X+5) 2
This argument applies to every pair (I,J) of type (2,3) in [z,y] but the right-most one.
Furthermore, all pairs (I, .J) in [z, y] to the left of the left-most pair of type (2,3) satisfy
|I| > |J| > 1 and so do all pairs to the right of the right-most pair of type (2, 3). This shows

that |7 N [z,y]| > 3 (1 - ﬁ) |[z,y]| — O(1) for each of at most three disjoint intervals

comprising [n]\C'. Since |[n|]\C| =n — O(k), we conclude that

1 1

The statement follows. O

Since the complexes I'y, ;, are obtained from D(n,4) by a sequence of bistellar flips, all
these complexes are PL 4-spheres. Thus Theorem 5.7 follows by applying Lemma 5.10 for
values of k — oco. In fact, one can easily check that for all n and k, {1,3,5,...} N [n]is a
transversal of I',, 1, and so using these spheres, we cannot beat the 1/2 bound.

Remark 5.11. The facets of D(n,4) listed in Lemma 5.9 (for £ = 0) are also the positive
facets of the cs neighborly 4-sphere AZ}; see [18, 19] and Remark 4.14. Hence, similar to
the case of 'y, , one can start with A} and apply bistellar flips described in Definition 5.8
to the stars of certain positive faces as well as to the stars of their antipodes to produce a

sequence of cs 4-spheres whose transversal ratios converge to 1/2 as n — oo.

6 Open problems

We conclude with several open problems. We think of 77" and 7'5 as [0, 1]-valued functions
of d. Our current knowledge of the values of these functions can be summarized as follows:

=1 =1/2, and 7, > 1/2, TQIZH >2/5, for k > 2;
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=1y =1/2, 79 >4/7, 5 >1/2, 7§ > 6/11, and 14}, > 1/2, 1., > 2/5, for k > 4.

It would be most desirable to determine explicit values of Tf and Tf for some d > 4.
While this is completely out of reach at the moment, the following problems might be more
accessible. To start, observe that by Proposition 3.8, for any n(®t1/2 > m > n, there
exists a sequence of pure simplicial complexes of dimension d — 1 with n vertices and ©(m)
facets whose transversal ratios converge to 1 as n — oo. In stark contrast, despite the fact
that the numbers of facets of simplicial (d — 1)-spheres with n vertices range from O(n) to
O(nl?/2ly (see [4, 5, 16, 26]), when d > 6, we do not have a single example of a simplicial
(d — 1)-sphere whose transversal ratio is larger than 1/2; yet for d > 4, we also do not have
any non-trivial upper bounds on Tf and T&g . This leads to

Problem 6.1. For a fized d > 4, are Tf and 7';? bounded away from 17

A variation of the above problem can be found in [3, Section 10.3]. The next problem
concerns the asymptotic behavior of {71’} and {r7}.

Problem 6.2. Is it true that limg_,o Tf = limg_ 0o TC*? = 17 Are the sequences {Tf} and
{79} (weakly) increasing? Or at least, are the sequences {74}, {md 1} {r5.}, and {TQS;CH}
(weakly) increasing?

It is also worth mentioning that, at the moment, we do not know whether the infinite
families of spheres of dimension 3, 4, and 5 constructed in Section 5 are polytopal or not.
(We expect they are not polytopal.) Consequently, there are gaps between the existing
lower bounds on TéD and 7'&9 for 4 < d < 6. This prompts us to ask

Problem 6.3. Is Tf = Tf foralld > 47

Finally, making any additional progress on Turan’s problem, especially for such classes
of pure simplicial complexes as pseudomanifolds or Eulerian complexes, would be of great
importance.
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