The merging operation and $(d-i)$-simplicial i-simple d-polytopes

Isabella Novik*
Department of Mathematics
University of Washington
Seattle, WA 98195-4350, USA
novik@uw.edu

Hailun Zheng
Department of Mathematics \& Statistics
University of Houston-Downtown
One Main Street, Houston, TX 77002, USA
zhengh@uhd.edu

May 10, 2024

Dedicated to Günter M. Ziegler on the occasion of his 60 th birthday.

Abstract

We define a certain merging operation that given two d-polytopes P and Q such that P has a simplex facet and Q has a simple vertex produces a new d-polytope $P \triangleright Q$ with $f_{0}(P)+f_{0}(Q)-(d+1)$ vertices. We show that if for some $1 \leq i \leq d-1, P$ and Q are ($d-i$)-simplicial i-simple d-polytopes, then so is $P \triangleright Q$. We then use this operation to construct new families of $(d-i)$-simplicial i-simple d-polytopes. Specifically, we prove that for all $2 \leq i \leq d-2 \leq 6$ with the exception of $(i, d)=(3,8)$ and $(5,8)$, there is an infinite family of $(d-i)$-simplicial i-simple d-polytopes; furthermore, for all $2 \leq i \leq 4$, there is an infinite family of self-dual i-simplicial i-simple $2 i$-polytopes. Finally, we show that for every $d \geq 4$, there are $2^{\Omega(N)}$ combinatorial types of $(d-2)$-simplicial 2 -simple d-polytopes with at most N vertices.

1 Introduction

A polytope is the convex hull of finitely many points in \mathbb{R}^{d}. For brevity, we refer to d dimensional polytopes as d-polytopes. While polytopes have been studied since antiquity, many central questions about them remain wide open. In this paper we present progress on one of these questions.

A d-polytope P is called simplicial if every facet of P contains exactly d vertices. Similarly, a d-polytope P is simple, if every vertex of P is in exactly d facets. (Equivalently, P is simple if its dual P^{*} is simplicial.) Much progress has been made on the study of

[^0]simplicial and simple polytopes, but much less is known about general d-polytopes that are neither simplicial nor simple already when $d=4$. We refer the reader to $[8,17]$ as excellent books on the theory of polytopes, to $[3,15]$ for one of the most celebrated results on the face numbers of simplicial polytopes, and to $[2,5,12,18,19]$ for results on general 4-polytopes.

Let $1 \leq i \leq d-1$. A d-polytope P is called i-simplicial if all of its i-faces are simplices, and it is i-simple if its dual P^{*} is i-simplicial (equivalently, if every $(d-i-1)$-face of P is contained in exactly $i+1$ facets). In particular, the class of $(d-1)$-simplicial d polytopes coincides with the class of simplicial d-polytopes, while the class of $(d-1)$ simple d-polytopes is the class of simple d-polytopes. The d-simplex is both simple and simplicial, and it is known that a j-simplicial i-simple d-polytope must be a simplex if $i+j>d$. The question of whether j-simplicial i-simple d-polytopes exist when $i, j>1$, and especially when $i+j=d$, was raised in the mid-1960s. Such polytopes can be compared to rare combinatorial objects like designs, and the constructions presented in this paper substantially advance our state of knowledge.

Let $2 \leq i \leq d-2$. While various conjectures (see, for instance [8, Exercise 9.7.7(iii)]) suggest that there should be a large number of $(d-i)$-simplicial i-simple d-polytopes, not many examples are known. The first infinite family of 2 -simplicial 2 -simple 4 -polytopes was constructed by Eppstein, Kuperberg, and Ziegler [7]. Their approach was generalized by Paffenholz and Ziegler [13] who established the existence of infinite families of $(d-2)$ simplicial 2 -simple d-polytopes for all $d \geq 4$. Notably, the minimum number of vertices in their d-dimensional construction is $2(d+1)$, realized by $\operatorname{conv}\left(\Sigma \cup \Sigma^{*}\right)$, where Σ is a d simplex whose $(d-3)$-faces are tangent to the unit sphere \mathbb{S}^{d-1}. Additional infinite families of 2-simplicial 2-simple 4-polytopes were constructed by Paffenholz and Werner [12]: all their polytopes are elementary (i.e., have $g_{2}^{\text {toric }}=0$) and have at least one simplex facet.

As for larger values of i, the d-dimensional demicube with $d \geq 4$ (also known as the half-cube) is 3 -simplicial $(d-3)$-simple while its dual is $(d-3)$-simplicial 3 -simple (see [8, Exercise 4.8.18]). Furthermore, the Gosset-Elte polytopes that arise from Wythoff's construction provide finitely many examples of $(d-i)$-simplicial i-simple d-polytopes for $d \leq 8$ and $2 \leq i \leq d-2[6]$. These are essentially all known to-date examples of $(d-i)$ simplicial i-simple d-polytopes with $2 \leq i \leq d-2$. In particular, it is not known whether a 5 -simplicial 5 -simple 10-polytope exists. In light of this, we further pose the following questions.

Question 1.1.

1. Let $d \geq 4$. What is the minimum number of vertices that a non-simplex $(d-2)$ simplicial 2-simple d-polytope can have?
2. Let $d \geq 6$ and let $3 \leq i \leq d / 2$. Are there infinite families of $(d-i)$-simplicial i simple d-polytopes? What is the minimum number of vertices that such a non-simplex polytope can have?

The goal of this paper is to provide new infinite families of $(d-i)$-simplicial i-simple d-polytopes for some values of i and d. To achieve this, we define a certain merging operation that given two d-polytopes P and Q, where P has a simplex facet and Q has a simple vertex, outputs a new d-polytope. This operation is modeled on a familiar notion of connected sums of simplicial polytopes, but designed in a way that preserves the property of being $(d-i)$-simplicial i-simple. Using this operation, we establish the following results:

1. There exist infinite families of ($d-i$)-simplicial i-simple d-polytopes for all pairs (i, d) such that $2 \leq i \leq d-2 \leq 6$ and (i, d) is not $(3,8)$ or $(5,8)$; see Theorem 5.1. This partially answers Question 1.1(2) and [10, Problem 19.5.23].
2. There exist infinite families of self-dual i-simplicial i-simple $2 i$-polytopes for $2 \leq i \leq 4$; see Theorem 5.4. This partially answers [10, Problem 19.5.24].
3. For all $d \geq 4$, there are $2^{\Omega(N)}$ combinatorial types of ($d-2$)-simplicial 2-simple d-polytopes with at most N vertices; see Theorem 6.13.

To prove the last result, we construct a higher-dimensional analog of the unique 2simplicial 2-simple 4-polytope with nine vertices. (This 4-polytope is called P_{9} in [12]; it has the minimum number of vertices among all non-simplex 2 -simplicial 2 -simple 4 -polytopes.) We then apply the merging operation to produce new infinite families of $(d-2)$-simplicial 2 -simple d-polytopes.

As for the second result, several examples of (non-simplex) self-dual 2-simplicial 2simple 4-polytopes were known before, among them polytopes P_{9} and P_{10} from [12]. In fact, [11] provides a (different) infinite family of self-dual 2 -simplicial 2 -simple 4 -polytopes, that, for instance, includes the 24 -cell. An interesting infinite family of self-dual d-polytopes that are neither j-simplicial nor i-simple (for any $d \geq 3$ and $j, i>1$) is the family of multiplexes constructed by Bisztriczky [4].

The outline of the paper is as follows. We review several definitions related to polytopes and face lattices in Section 2. Section 3 serves as a warm-up section where we discuss the minimum number of vertices that a non-simplex 3 -simplicial 2 -simple 5 -polytope can have. In Section 4, we introduce and study the merging operation that applies to pairs of polytopes one of which has a simplex facet and another a simple vertex. This operation has several interesting properties; see, for instance, Theorem 4.6 and Theorem 4.12. Sections 5 and 6 form the most crucial part of this paper: there, we utilize the merging operation and its properties to provide our promised constructions of new ($d-i$)-simplicial i-simple d-polytopes. Specifically, in Section 5.1, we construct infinite families of $(d-i)$-simplicial i-simple d-polytopes for $d \leq 8$. In Section 5.2 , we construct infinite families of self-dual i-simplicial i-simple $2 i$-polytopes for $i \leq 4$. In Section 6.1, we revisit the 2 -simplicial 2 simple 4-polytopes providing several new constructions. Finally, in Section 6.2, we produce a higher-dimensional analog of P_{9} and use it to construct exponentially many (in N) combinatorial types of ($d-2$)-simplicial 2-simple d-polytopes with at most N vertices.

2 Preliminaries

A polytope $P \subseteq \mathbb{R}^{d}$ is the convex hull of a finite set of points in \mathbb{R}^{d}. The dimension of P is the dimension of the affine span of P. For brevity, we say that P is a d-polytope if P is d-dimensional. In what follows, we always assume that $P \subseteq \mathbb{R}^{d}$ is a d-polytope.

A hyperplane $H \subseteq \mathbb{R}^{d}$ is a supporting hyperplane of P if P is contained in one of the two closed half-spaces determined by H. A (proper) face of P is the intersection of P with any supporting hyperplane of P. A face of a polytope is by itself a polytope. We refer to $(d-1)$-faces of P as facets of P, to $(d-2)$-faces as ridges, to 1 -faces as edges, and to 0 -faces as vertices. We denote by $V(P)$ the vertex set of P. If $V(P)$ consists of $d+1$ affinely independent points, then P is a d-simplex; we denote it by σ_{d}.

The face poset of $P, \mathcal{L}(P)$, is the set of faces of P (including P and \emptyset) ordered by inclusion, and two polytopes P and Q have the same combinatorial type if $\mathcal{L}(P)$ and $\mathcal{L}(Q)$ are isomorphic. The face poset of P is a lattice. We usually write the maximum element of $\mathcal{L}(P)$ (namely, P) as $\hat{1}$ and the minimum element (namely, \emptyset) as $\hat{0}$. For a subset S of $\mathcal{L}(P)$, we let $\vee S$ and $\wedge S$ denote the join and the meet of elements of S, respectively.

By using translation, if necessary, we can always assume that the origin, $\mathbf{0}$, lies in the interior of P. The set

$$
P^{*}=\left\{y \in \mathbb{R}^{d}: y^{t} x \leq 1, \forall x \in P\right\}
$$

is then a polytope called the dual polytope of P; see [17, Chapter 2]. The dual construction has the following properties: for every d-polytope $P \subseteq \mathbb{R}^{d}$ (with $\mathbf{0}$ in the interior of P), $P^{* *}=P$ and there are order-reversing bijective maps $\phi: \mathcal{L}(P) \rightarrow \mathcal{L}\left(P^{*}\right)$ and $\phi: \mathcal{L}\left(P^{*}\right) \rightarrow$ $\mathcal{L}\left(P^{* *}\right)=\mathcal{L}(P)$, which by slight abuse of notation we denote by the same symbol, such that $\phi(\phi(G))=G$ for all $G \in \mathcal{L}(P) \sqcup \mathcal{L}\left(P^{*}\right)$. If $\mathcal{L}(P)$ is self-dual, that is, if there is an order reversing bijection from $\mathcal{L}(P)$ to itself, then we say that P is a self-dual polytope.

Let $1 \leq i \leq d-1$. A d-polytope P is i-simplicial if all of its i-faces are simplices; equivalently, if all of its i-faces have $i+1$ vertices. Similarly, P is i-simple if every $(d-i-1)$ face is contained in exactly $i+1$ facets. The class of $(d-1)$-simplicial d-polytopes is known as the class of simplicial d-polytopes, while the class of $(d-1)$-simple d-polytopes is known as the class of simple d-polytopes. In particular, if P is i-simplicial, then the interval $[\hat{0}, \tau]$ is a Boolean lattice for any face τ with $\operatorname{dim} \tau \leq i$. Likewise, if P is i-simple, then $[\tau, \hat{1}]$ is Boolean for any face τ with $\operatorname{dim} \tau \geq d-i-1$. Hence P is i-simplicial if and only if P^{*} is ($d-i$)-simple.

If v is a vertex of P, then the vertex figure of P at v, denoted P / v, is the polytope obtained by intersecting P with a hyperplane H that has v on one side and all other vertices of P on the other side. The combinatorial type of P / v does not depend on the choice of H. In fact, $\mathcal{L}(P / v)$ is exactly the interval $[v, \hat{1}]$ in $\mathcal{L}(P)$. We say that a vertex v of a d-polytope P is simple if P / v is a simplex, or equivalently, if v belongs to exactly d facets of P.

If P is a simplicial polytope, then the collection of vertex sets of faces of P, including \emptyset but not including P itself, forms an abstract simplicial complex ∂P called the boundary
complex of P. When V is a finite set, we let $\partial \bar{V}:=\{\tau \subset V: \tau \neq V\}$ denote the boundary complex of an abstract simplex with vertex set V.

Consider a d-polytope $P \subset \mathbb{R}^{d} \times\{\mathbf{0}\} \subset \mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}}$ and a d^{\prime}-polytope $Q \subset\{\mathbf{0}\} \times \mathbb{R}^{d^{\prime}} \subset$ $\mathbb{R}^{d} \times \mathbb{R}^{d^{\prime}}$ such that the origin is in the relative interior of both P and Q. The polytope $P \oplus Q:=\operatorname{conv}(P \cup Q)$ is called the free sum of P and Q. All faces of $P \oplus Q$ are of the form $\operatorname{conv}(F \cup G)$, where $F \neq P$ is a face of P and $G \neq Q$ is a face of Q. Consequently, if P and Q are simplicial polytopes then the boundary complex of $P \oplus Q$ coincides with the join of ∂P and ∂Q :

$$
\partial(P \oplus Q)=\partial P * \partial Q:=\{\sigma \cup \tau: \sigma \in \partial P, \tau \in \partial Q\} .
$$

For a d-polytope P, we let $f(P)=\left(f_{0}(P), f_{1}(P), \ldots, f_{d-1}(P)\right)$ be the f-vector of P; here $f_{i}(P)$ denotes the number of i-faces of P. Also, for $0 \leq i<j \leq d-1$, we let $f_{i, j}(P)$ denote the number of pairs of faces $F_{i} \subset F_{j}$ of P such that $\operatorname{dim} F_{i}=i$ and $\operatorname{dim} F_{j}=j$.

To conclude this section, we note that for all $0 \leq i \leq d-1, f_{i}(P)=f_{d-i-1}\left(P^{*}\right)$. This is immediate from the existence of an order-reversing bijection $\phi: \mathcal{L}(P) \rightarrow \mathcal{L}\left(P^{*}\right)$.

3 A warm-up: the minimum number of vertices

As mentioned in the introduction, for every $d \geq 4$, there exists a ($d-2$)-simplicial 2 simple d-polytope with $2(d+1)$ vertices. Furthermore, for $d=4$, there is a 2 -simplicial 2 -simple 4 -polytope with only 9 vertices. Are there non-simplex ($d-2$)-simplicial 2 -simple d-polytopes with fewer than $2 d+2$ vertices for $d>4$? (Cf. Question 1.1(1).) The goal of this warm-up section is to answer this question for $d=5$; see Proposition 3.3. To do this, we first establish a criterion that the f-vectors of ($d-i$)-simplicial i-simple d-polytopes (if they exist) must satisfy; cf. [8, Exercise 9.7.7(ii)]. We include the proof for completeness.

Lemma 3.1. Let $d \geq 2$ and $1 \leq i \leq d-1$. Let P be a ($d-i$-simplicial d-polytope. Then P is i-simple if and only if $(d-i+1) f_{d-i}(P)=(i+1) f_{d-i-1}(P)$.

Proof: If P is $(d-i)$-simplicial, then every $(d-i)$-face of P is a simplex; hence, every $(d-i)$-face contains $d-i+1$ faces of dimension $d-i-1$. This means that $f_{d-i-1, d-i}(P)=$ $(d-i+1) f_{d-i}(P)$. On the other hand, a ($d-i-1$)-face of any d-polytope is contained in at least $i+1$ faces of dimension $d-i$. Thus, $f_{d-i-1, d-i}(P) \geq(i+1) f_{d-i-1}(P)$, and we conclude that $(d-i+1) f_{d-i}(P)=f_{d-i-1, d-i}(P) \geq(i+1) f_{d-i-1}(P)$. Furthermore, equality holds if and only if every ($d-i-1$)-face is in exactly $i+1$ faces of dimension $d-i$ which happens if and only if P is i-simple.

Corollary 3.2. For all $i \geq 1$, an i-simplicial $2 i$-polytope P is i-simple if and only if $f_{i-1}(P)=f_{i}(P)$.

Proposition 3.3. The minimum number of vertices that a non-simplex 3-simplicial 2simple 5-polytope can have is 12 .

Proof: There exists a 3-simplicial 2-simple 5-polytope with $2(5+1)=12$ vertices. Thus, we only need to show that there is no non-simplex 3 -simplicial 2 -simple 5 -polytope with fewer than 12 vertices.

It is known (see [12]) that every non-simplex 2 -simplicial 2 -simple 4 -polytope has at least 9 vertices, and the only such polytope with 9 vertices is the polytope denoted by P_{9} in [12]. Since vertex figures of 3 -simplicial 2 -simple 5 -polytopes are 2 -simplicial 2 -simple, it follows that a non-simplex 3 -simplicial 2 -simple polytope Q must have at least 10 vertices.

Assume that $f_{0}(Q)=10$. Then each vertex figure is either the 4 -simplex σ_{4} or P_{9}, and so each vertex of Q has degree 5 or 9 . Since Q is not simple, at least one of the vertex figures of Q is P_{9}. Consider Q^{*}; it has 10 facets each of which is either σ_{4} or P_{9}. (This is because both σ_{4} and P_{9} are self-dual.) Now consider a facet F of Q^{*} that is isomorphic to P_{9}. It has 7 non-simplex facets (one cross-polytope, also known as an octahedron, and six bipyramids); see Construction 6.1. Each of these seven 3 -faces must lie in F and one additional facet of Q^{*}, which cannot be a simplex. This shows that Q^{*} has at least eight facets isomorphic to P_{9}. Then in Q, at least 8 out of 10 vertices are of degree 9 . This implies that all vertices of Q have degree ≥ 8. Consequently, all vertices of Q have degree 9 , and so $f_{1}(Q)=\binom{10}{2}=45$.

Since Q is 3 -simplicial 2-simple, $4 f_{3}(Q)=3 f_{2}(Q)$ by Lemma 3.1. Furthermore, since Q is 3 -simplicial and since the toric h-vector of a 5 -polytope is symmetric [16],

$$
0=g_{3}^{\text {toric }}(Q)=f_{2}(Q)-4 f_{1}(Q)+10 f_{0}(Q)-20
$$

Finally, by the Euler relation, $\quad f_{0}(Q)-f_{1}(Q)+f_{2}(Q)-f_{3}(Q)+f_{4}(Q)=2$.
This uniquely determines the f-vector of $Q: f(Q)=(10,45,100,75,12)$. But then we must have $75=f_{3}(Q) \leq\binom{ f_{4}(Q)}{2}=66$, which is a contradiction.

Similarly, if $f_{0}(Q)=11$, then $f_{2}(Q)=4 f_{1}(Q)-10 f_{0}(Q)+20=4 f_{1}(Q)-90$, which is not a multiple of 4 . On the other hand, $4 f_{3}(Q)=3 f_{2}(Q)$ still holds, so $f_{3}(Q)$ is not an integer, which is again a contradiction.

While a 2 -simplicial 2 -simple 4 -polytope with 9 vertices is unique, this is not the case with 3 -simplicial 2 -simple 5 -polytopes with 12 vertices. (For instance, in Section 6 we will see that there is such a polytope with a simplex facet.) For $d \geq 6$, Question 1.1(1) remains unsolved. It would be very interesting to shed any light on whether the answer is $2 d+2$ or smaller than $2 d+2$.

4 The merging operation

Throughout, let $d \geq 2$. Recall that a connected sum of two simplicial d-polytopes ${ }^{1}$ is a simplicial d-polytope. In other words, taking connected sums preserves the property

[^1]of being ($d-1$)-simplicial 1 -simple. Is there an analogous operation that preserves the property of being $(d-i)$-simplicial i-simple for an arbitrary $2 \leq i \leq d-1$? The goal of this section is to discuss one such operation that can be applied to two d-polytopes as long as one of them has a simplex facet and another one has a simple vertex. The order in which we list the vertices will be important for our construction. Specifically, we write $\left[a_{1}, \ldots, a_{m}\right]$ to denote the polytope $\operatorname{conv}\left(a_{1}, \ldots, a_{m}\right)$ whose vertices are ordered as a_{1}, \ldots, a_{m}. We will mainly use this notation to describe faces of a given polytope. For brevity, we also write the edge $[u, v]$ as $u v$.

4.1 The definition and basic properties

We start with setting up a few notations, conventions and definitions that will be repeatedly used throughout this section. Let P_{1} and P_{2} be two d-polytopes such that P_{1} has a simplex facet $F:=\left[u_{1}, \ldots, u_{d}\right]$ and P_{2} has a simple vertex v whose neighbors are ordered as $u_{1}^{\prime}, \ldots, u_{d}^{\prime}$. We adopt the following notation: for $1 \leq j \leq d$, let H_{j} be the facet of P_{1} that is adjacent to F along the ridge $G_{j}:=\left[u_{1}, \ldots, \widehat{u_{j}}, \ldots, u_{d}\right]$. Similarly, for $1 \leq j \leq d$, let H_{j}^{\prime} be the facet of P_{2} that contains all the edges of P_{2} incident with v but $v u_{j}^{\prime}$.

By applying a projective transformation to P_{1}, we may assume that the hyperplanes $\operatorname{aff}(F), \operatorname{aff}\left(H_{1}\right), \ldots, \operatorname{aff}\left(H_{d}\right)$ define a d-simplex Σ that contains P_{1}. (The existence of such a projective transformation follows from the proof of [14, Lemma 3.2.4].) Denote the vertex of Σ that does not lie in F by u. By applying the unique affine transformation that maps v to u, and u_{k}^{\prime} to u_{k} for $1 \leq k \leq d$, we may further assume that the d-simplices $\Sigma^{\prime}=\left[v, u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right]$ and Σ coincide, and in particular that $P_{1} \subseteq \Sigma=\Sigma^{\prime}$ is a convex subset of P_{2}.

Finally, let $P_{2}^{\prime}:=\operatorname{conv}\left(V\left(P_{2}\right) \backslash v\right)$ and $F^{\prime}:=\left[u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right]$ be two subpolytopes of P_{2}. Note that if P_{2} is a d-simplex, then P_{2}^{\prime} is F^{\prime}, and otherwise, F^{\prime} is a facet of P_{2}^{\prime}.

Definition 4.1. Under the above assumptions on P_{1} and P_{2}, define a new d-polytope $P_{1} \triangleright P_{2}$ obtained from P_{2} by replacing $\Sigma^{\prime}=\Sigma$ with P_{1}. Alternatively, $P_{1} \triangleright P_{2}$ is the union of P_{1} and P_{2}^{\prime} where we identify u_{k} with u_{k}^{\prime} for $1 \leq k \leq d$. (Observe that P_{1} and P_{2}^{\prime} share the facet $F=F^{\prime}$, lie on the opposite sides of F and that their union is a polytope.) The new polytope is called the merge of P_{1} and P_{2} along F and v.

Example 4.2. Consider two polygons P_{1} and P_{2} whose boundary complexes are cycles $\left(u_{1}, \ldots, u_{n}, u_{1}\right)$ and $\left(v_{0}, v_{1}, \ldots, v_{k}, v_{0}\right)$. Then the merge of P_{1} and P_{2} along the edge $F=u_{1} u_{n}$ and the vertex v_{0} is the polygon whose boundary complex is the cycle ($v_{1}=$ $\left.u_{1}, u_{2}, \ldots, u_{n-1}, u_{n}=v_{k}, v_{k-1}, \ldots, v_{2}, v_{1}=u_{1}\right)$. In other words, in dimension $2, P_{1} \triangleright P_{2}$ is exactly the connected sum of P_{1} and $P_{2}^{\prime}=\operatorname{conv}\left(V\left(P_{2}\right) \backslash v_{0}\right)$.

Figure 1 illustrates how to merge two 3 -polytopes.
Remark 4.3. For $d \geq 3$, the set of facets of $P_{1} \triangleright P_{2}$ consists of

Figure 1: $P_{1} \subseteq \Sigma, P_{2} \supseteq \Sigma^{\prime}$, and $P_{1} \triangleright P_{2}$, where the merge is along $\left[u_{1}, u_{2}, u_{3}\right] \cong\left[u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right]$ and v.

- old facets: all facets of P_{1} with the exception of F, H_{1}, \ldots, H_{d}, and all facets of P_{2} with the exception of $H_{1}^{\prime}, \ldots, H_{d}^{\prime}$;
- new facets: for each $1 \leq j \leq d, H_{j}$ and H_{j}^{\prime} merge into a single facet $H_{j} \triangleright H_{j}^{\prime}$ where the merge is along $G_{j}=\left[u_{1}, \ldots, \widehat{u_{j}}, \ldots, u_{d}\right]$ and v (with the neighbors of v in H_{j}^{\prime} ordered as $\left.u_{1}^{\prime}, \ldots, \widehat{u_{j}^{\prime}}, \ldots u_{d}^{\prime}\right)$.
Remark 4.4. The description of facets of $P_{1} \triangleright P_{2}$ leads to the following observation: the combinatorial type of $P_{1} \triangleright P_{2}$ may depend on the ordering of vertices of F and neighbors of v. That is, letting $F=\left[u_{\sigma(1)}, \ldots, u_{\sigma(d)}\right]$ and relabeling the neighbors of v as $v_{\sigma^{\prime}(1)}, \ldots, v_{\sigma^{\prime}(d)}$, for some permutations σ, σ^{\prime} of $[d]:=\{1,2, \ldots, d\}$, may result in a polytope with a different combinatorial type; see Section 6 for examples. This is analogous to the situation with the connected sum of two simplicial polytopes.

It follows from Definition 4.1 that if P_{1} is a simplex, then $P_{1} \triangleright P_{2}=P_{2}$, and similarly if P_{2} is a simplex, then $P_{1} \triangleright P_{2}=P_{1}$. In all other cases, F is not a facet of $P_{1} \triangleright P_{2}$ and v is not a vertex of $P_{1} \triangleright P_{2}$. Furthermore, if both P_{1} and P_{2} are simplicial and P_{2} has a simple vertex v, then the merge of P_{1} and P_{2} along any facet F of P_{1} and v is the connected sum of P_{1} and $P_{2}^{\prime}=\operatorname{conv}\left(V\left(P_{2}\right) \backslash v\right)$.

We summarize this discussion in the following lemma.
Lemma 4.5. Let $d \geq 2$. Let P_{1} be a d-polytope with a simplex facet and let P_{2} be a dpolytope with a simple vertex. Then $f_{0}\left(P_{1} \triangleright P_{2}\right)=f_{0}\left(P_{1}\right)+f_{0}\left(P_{2}\right)-(d+1)$. In particular, $f_{0}\left(P_{1} \triangleright P_{2}\right) \geq \max \left\{f_{0}\left(P_{1}\right), f_{0}\left(P_{2}\right)\right\}$ and equality holds if and only if at least one of P_{1} and P_{2} is a simplex. In the case that one of P_{1} and P_{2} is a simplex, $P_{1} \triangleright P_{2}$ is equal to the other polytope.

The following theorem and corollary explain the significance of the merging operation.
Theorem 4.6. Let $d \geq 2$ and $1 \leq i, j \leq d-1$, and let P_{1} and P_{2} be d-polytopes with a simplex facet and a simple vertex, respectively. If P_{1} and P_{2} are j-simplicial, then so is $P_{1} \triangleright P_{2}$. If P_{1} and P_{2} are i-simple, then so is $P_{1} \triangleright P_{2}$.

Proof: We first discuss j-simplicial polytopes. The proof is by induction on d. The statement holds for $j=1$ for any d (since all polytopes are 1 -simplicial). Hence the statement holds for $d=2$.

Now, assume the statement holds for $d-1$ and any $1 \leq j \leq d-2$. We prove that the statement holds for d and any $1 \leq j \leq d-1$. Let P_{1} and P_{2} be two j-simplicial d-polytopes. If one of them is a simplex, there is nothing to prove. Also, if $j=d-1$, then $P_{1} \triangleright P_{2}$ is the connected sum of two simplicial polytopes P_{1} and P_{2}^{\prime}, which is $(d-1)$-simplicial.

Thus assume that $2 \leq j \leq d-2$ and that neither P_{1} nor P_{2} is a simplex. Let τ be a j-face of $P_{1} \triangleright P_{2}$. Then either τ is a j-face of P_{1} or it is a j-face of P_{2} or it is a j-face of $H_{k} \triangleright H_{k}^{\prime}$ for some k. In the first two cases, τ is a simplex because P_{1} and P_{2} are j-simplicial. In the last case, it is a simplex because both H_{k} and H_{k}^{\prime} are j-simplicial, and so τ is a simplex by the induction hypothesis.

We now discuss i-simple polytopes. The proof is again by induction on d. The statement holds for $i=1$ and any d (since all polytopes are 1 -simple). Hence the statement holds for $d=2$. Now assume the statement holds for $d-1$ and any $2 \leq i \leq d-2$. Let $2 \leq i \leq d-1$ and let P_{1} and P_{2} be two i-simple d-polytopes. To see that $P_{1} \triangleright P_{2}$ is i-simple, let τ be a ($d-i-1$)-face of $P_{1} \triangleright P_{2}$. There are two possible cases.

Case 1: τ is a face of one of $H_{k} \triangleright H_{k}^{\prime}$. Since P_{1} and P_{2} are i-simple, H_{k} and H_{k}^{\prime} are ($(i-1)-$ simple $(d-1)$-polytopes. Thus, by the induction hypothesis, $H_{k} \triangleright H_{k}^{\prime}$ is an $(i-1)$-simple ($d-1$)-polytope. Since τ is a face of $H_{k} \triangleright H_{k}^{\prime}$ of dimension $d-i-1=(d-1)-(i-1)-1$, it follows that there are exactly i facets of $H_{k} \triangleright H_{k}^{\prime}$ (and hence ridges of $P_{1} \triangleright P_{2}$) that contain τ. Each of these i ridges is contained in two facets of $P_{1} \triangleright P_{2}: H_{k} \triangleright H_{k}^{\prime}$ and one additional facet. Thus, τ is contained in exactly $i+1$ facets of $P_{1} \triangleright P_{2}$, namely, $H_{k} \triangleright H_{k}^{\prime}$ and the i additional facets just described.

Case 2: τ is not contained in any $H_{k} \triangleright H_{k}^{\prime}$ (for $k=1, \ldots, d$). Then either τ is a face of P_{1} not contained in any of F, H_{1}, \ldots, H_{d}, or τ is a face of P_{2} that does not contain v and is not contained in any of $H_{1}^{\prime}, \ldots, H_{d}^{\prime}$. In the former case, the facets of $P_{1} \triangleright P_{2}$ that contain τ are the facets of P_{1} that contain τ and there are $i+1$ of them since P_{1} is i-simple. Similarly, in the latter case, the facets of $P_{1} \triangleright P_{2}$ that contain τ are the facets of P_{2} that contain τ and there are $i+1$ of them.

Corollary 4.7. Let $d \geq 2$ and $1 \leq i \leq d-1$. Let P be $a(d-i)$-simplicial i-simple d-polytope such that (1) P is not a simplex, (2) P has a simplex facet F, and (3) P has a simple vertex v not contained in F. Finally, let $P \triangleright P$ be the merge of P with itself along F and v. Then $P \triangleright P$ is a $(d-i)$-simplicial i-simple d-polytope that has a simplex facet and a simple vertex not contained in that facet; furthermore, $f_{0}(P \triangleright P)>f_{0}(P)$. Consequently, there exists an infinite family of $(d-i)$-simplicial i-simple d-polytopes obtained by iterative merging with P.
Proof: \quad Consider two copies of $P: P_{1}$ and P_{2}. Denote the copy of F in P_{j} by F_{j}, and the copy of v in P_{j} by v_{j}. Merge P_{1} and P_{2} along F_{1} and v_{2}. By Theorem 4.6, $P_{1} \triangleright P_{2}$ is ($d-i$)-simplicial and i-simple; it has a simplex facet F_{2} and a simple vertex $v_{1} \notin F_{2}$.

This corollary implies that to find infinitely many ($d-i$)-simplicial i-simple d-polytopes, it suffices to find the "building blocks" - those with simplex facets and simple vertices. Hence we propose the following question that strengthens Question 1.1(2).

Question 4.8. Let $d \geq 4$ and $2 \leq i \leq d-2$. Are there infinite families of $(d-i)$-simplicial i-simple d-polytopes, each of which has a simplex facet and a simple vertex?

4.2 The face lattice

In this subsection, we assume that P_{1} and P_{2} are two $(d-i)$-simplicial i-simple d-polytopes that will be merged along a simplex facet $F=\left[u_{1}, \ldots, u_{d}\right]$ of P_{1} and a simple vertex v of P_{2}. Our goal is to describe the face lattice of $P_{1} \triangleright P_{2}, \mathcal{L}\left(P_{1} \triangleright P_{2}\right)$. We continue using notation introduced in Section 4.1. The following definitions depend on P_{1}, P_{2} but also on d and i.

Definition 4.9. Consider the following two subposets of $\mathcal{L}\left(P_{1}\right)$ and $\mathcal{L}\left(P_{2}\right)$:

$$
\begin{aligned}
\mathcal{L}\left(P_{1}\right)^{-} & :=\mathcal{L}\left(P_{1}\right) \backslash\{\sigma: \sigma \subseteq F, \operatorname{dim} \sigma \geq d-i\}, \\
\mathcal{L}\left(P_{2}\right)^{-} & :=\mathcal{L}\left(P_{2}\right) \backslash\{\sigma: v \in \sigma, \operatorname{dim} \sigma<d-i\},
\end{aligned}
$$

and let $\mathcal{L}\left(P_{1}\right)^{-} \sqcup \mathcal{L}\left(P_{2}\right)^{-}$be their disjoint sum, i.e., the disjoint union of $\mathcal{L}\left(P_{1}\right)^{-}$and $\mathcal{L}\left(P_{2}\right)^{-}$ with the original partial orders on $\mathcal{L}\left(P_{1}\right)^{-}$and $\mathcal{L}\left(P_{2}\right)^{-}$, and no other comparable pairs.

Definition 4.10. Let \mathcal{L} be the following quotient poset of $\mathcal{L}\left(P_{1}\right)^{-} \sqcup \mathcal{L}\left(P_{2}\right)^{-}$. As a set, it is $\left(\mathcal{L}\left(P_{1}\right)^{-} \sqcup \mathcal{L}\left(P_{2}\right)^{-}\right) / \sim$, where

$$
\begin{gathered}
{\left[u_{k}: k \in S\right] \sim\left[u_{k}^{\prime}: k \in S\right] \text { for all } S \subseteq[d],|S| \leq d-i,} \\
\text { and } \cap_{k \in S} H_{k} \sim \cap_{k \in S} H_{k}^{\prime} \text { for all } S \subseteq[d],|S| \leq i
\end{gathered}
$$

The partial order on \mathcal{L} is inherited from $\mathcal{L}\left(P_{1}\right)^{-} \sqcup \mathcal{L}\left(P_{2}\right)^{-}:[\tau]<[\sigma]$ if there are representatives τ^{\prime} and σ^{\prime} of the equivalence classes $[\tau]$ and $[\sigma]$ such that $\tau^{\prime}<\sigma^{\prime}$ in $\mathcal{L}\left(P_{1}\right)^{-} \sqcup \mathcal{L}\left(P_{2}\right)^{-}$.

The main result of this subsection - Theorem 4.12- asserts that \mathcal{L} is the face lattice of $P_{1} \triangleright P_{2}$. The proof relies on the following lemma.

Lemma 4.11. Let $S \subseteq[d]$.

1. If $|S| \leq i$, then $\cap_{k \in S} H_{k}$ is a $(d-|S|)$-face of P_{1} not contained in F, while $\cap_{k \in S} H_{k}^{\prime}$ is a $(d-|S|)$-face of P_{2} containing v.
2. If $|S| \leq d-i$, then $\left[u_{k}: k \in S\right]$ is an $(|S|-1)$-face of P_{1} and $\left[u_{k}^{\prime}: k \in S\right]$ is an $(|S|-1)$-face of P_{2}.
3. If H is a facet of P_{1} that is not one of F, H_{1}, \ldots, H_{d}, then H shares with F at most $d-i-1$ vertices, and H does not contain any intersection of the form $\cap_{k \in S} H_{k}$, for $S \subseteq[d],|S| \leq i$. Hence, $\mathcal{L}(H)$ is equal to $[\hat{0}, H]$ computed in both $\mathcal{L}\left(P_{1}\right)^{-}$and \mathcal{L}.
4. If H is a facet of P_{2} that does not contain v, then H does not contain any intersection of the form $\cap_{k \in S} H_{k}^{\prime}$. Thus $\mathcal{L}(H)$ is equal to $[\hat{0}, H]$ computed in both $\mathcal{L}\left(P_{2}\right)^{-}$and \mathcal{L}.

Proof: For part (1), we only need to show that $\cap_{k \in S} H_{k}$ is $(d-|S|)$-dimensional and that it is not contained in F. Consider $\tau:=\left(\cap_{k \in S} H_{k}\right) \cap F=\cap_{k \in S}\left(H_{k} \cap F\right)$. Since F is a ($d-1$)-simplex, τ is a face of P_{1} of dimension $d-|S|-1$. Now, since $|S| \leq i$, and so $d-|S|-1 \geq d-i-1$, the assumption that P_{1} is i-simple implies that the interval $[\tau, \hat{1}]$ is a Boolean lattice whose coatoms are H_{k}, for $k \in S$, and F. This, in turn, implies the desired properties of $\cap_{k \in S} H_{k}$.

For part (2), since F is a simplex facet of $P_{1},\left[u_{k}: k \in S\right]$ must be a simplex $(|S|-1)$-face of P_{1}. Also, since v is simple, the edges $v u_{k}^{\prime}$ for $k \in S$ determine an $|S|$-face of P_{2}, and this face must be a simplex since P_{2} is $(d-i)$-simplicial. Thus $\left[u_{k}^{\prime}: k \in S\right]$ is an $(|S|-1)$-face of P_{2}.

For part (3), note that if H contained $d-i$ vertices of F, say, u_{1}, \ldots, u_{d-i}, then [u_{1}, \ldots, u_{d-i}] would be a $(d-i-1)$-face of P_{1} contained in at least $i+2$ facets, namely, F, H_{d-i+1}, \ldots, H_{d}, and H; this is impossible since P is i-simple. Similarly, if H contained, say, the face $H_{1} \cap \cdots \cap H_{i}$, then this $(d-i)$-face would be in at least $i+1$ facets, namely, H_{1}, \ldots, H_{i}, and H, which is again a contradiction.

Part (4) follows from the fact that $v \in \cap_{k \in S} H_{k}^{\prime}$ but $v \notin H$, and from the definition of $\mathcal{L}\left(P_{2}\right)^{-}$and \mathcal{L}.

Let S be a subset of $[d]$. Note that $\hat{0}_{P_{1}}=\vee_{k \in \emptyset} u_{k} \sim \vee_{k \in \emptyset} u_{k}^{\prime}=\hat{\mathrm{O}}_{P_{2}}$ is the minimum element of \mathcal{L}, while $\hat{1}_{P_{1}}=\wedge_{k \in \emptyset} H_{k} \sim \wedge_{k \in \emptyset} H_{k}^{\prime}=\hat{1}_{P_{2}}$ is the maximum element. Furthermore, Lemma 4.11 implies that if $|S| \leq d-i$, then $\vee_{k \in S} u_{k} \in \mathcal{L}\left(P_{1}\right)$ and $\vee_{k \in S} u_{k}^{\prime} \in \mathcal{L}\left(P_{2}\right)$ are both elements of $\mathcal{L}\left(P_{1}\right)^{-} \sqcup \mathcal{L}\left(P_{2}\right)^{-}$, and that they have the same rank. Similarly, if $|S| \leq i$, then $\wedge_{k \in S} H_{k}$ and $\wedge_{k \in S} H_{k}^{\prime}$ both belong to $\mathcal{L}\left(P_{1}\right)^{-} \sqcup \mathcal{L}\left(P_{2}\right)^{-}$and have the same rank there. We are now ready to prove that \mathcal{L} is the face lattice of $P_{1} \triangleright P_{2}$. Specifically, for $S \subseteq[d],|S| \leq i$, the class $\wedge_{k \in S} H_{k} \sim \wedge_{k \in S} H_{k}^{\prime}$ in \mathcal{L} represents the face $\cap_{k \in S}\left(H_{k} \triangleright H_{k}^{\prime}\right)$ of $P_{1} \triangleright P_{2}$.

Theorem 4.12. Let $d \geq 2$ and $1 \leq i \leq d-1$. Let P_{1} and P_{2} be $(d-i)$-simplicial i-simple polytopes such that P_{1} has a simplex facet $F=\left[u_{1}, \ldots, u_{d}\right]$ and P_{2} has a simple vertex v whose neighbors are $u_{1}^{\prime}, \ldots, u_{d}^{\prime}$. Then $\mathcal{L}=\mathcal{L}\left(P_{1} \triangleright P_{2}\right)$.

Proof: The proof is by induction on d and i. First we consider the case where P_{1} and P_{2} are both $(d-1)$-simplicial 1 -simple d-polytopes. This case splits into two subcases:

1. If P_{2} is not a simplex, then $P_{1} \triangleright P_{2}=P_{1} \# P_{2}^{\prime}$. The lattice $\mathcal{L}\left(P_{1} \triangleright P_{2}\right)$ is obtained from $\mathcal{L}\left(P_{1}\right)$ and $\mathcal{L}\left(P_{2}^{\prime}\right)$ by removing facets $\left[u_{1}, \ldots, u_{d}\right]$ and $\left[u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right]$ and identifying their boundary complexes; this agrees with our definition of $\mathcal{L}\left(P_{1}\right)^{-} \sqcup \mathcal{L}\left(P_{2}\right)^{-} / \sim=\mathcal{L}$.
2. If P_{2} is a simplex, then $P_{1} \triangleright P_{2}$ is P_{1}. That \mathcal{L} is equal to $\mathcal{L}\left(P_{1}\right)$ in this case, again follows easily from the definition of \mathcal{L}.

This discussion completes the proof of the base case $i=1$ and arbitrary $d \geq 2$.
Now assume that the statement holds in dimension $\leq d-1$ and consider two $(d-i)$ simplicial i-simple d-polytopes P_{1} and P_{2}, where $i \geq 2$. By definition, \mathcal{L} and $\mathcal{L}\left(P_{1} \triangleright P_{2}\right)$ have the same coatoms. So it suffices to show that for every facet H of $P_{1} \triangleright P_{2}$, the interval $[\hat{0}, H]$ in \mathcal{L} is equal to $\mathcal{L}(H)$.

First, if H is a facet of P_{1} not equal to F, H_{1}, \ldots, H_{d}, or H is a facet of P_{2} that does not contain v, then by Lemma 4.11, the interval $[\hat{0}, H]$ in \mathcal{L} is equal to $\mathcal{L}(H)$. For $1 \leq k \leq d$, both H_{k} and H_{k}^{\prime} are $(d-i)$-simplicial $(i-1)$-simple $(d-1)$-polytopes. In particular,

$$
\begin{aligned}
& \mathcal{L}\left(H_{k}\right)^{-}=\mathcal{L}\left(H_{k}\right) \backslash\left\{\sigma: \sigma \subseteq F \backslash u_{k}, \operatorname{dim} \sigma \geq(d-1)-(i-1)=d-i\right\}, \\
& \mathcal{L}\left(H_{k}^{\prime}\right)^{-}=\mathcal{L}\left(H_{k}^{\prime}\right) \backslash\left\{\sigma: v \in \sigma, u_{k}^{\prime} \notin \sigma, \operatorname{dim} \sigma<(d-1)-(i-1)=d-i\right\} .
\end{aligned}
$$

Hence $\left[0, H_{k}\right]$ computed in $\mathcal{L}\left(P_{1}\right)^{-}$is $\mathcal{L}\left(H_{k}\right)^{-}$and $\left[0, H_{k}^{\prime}\right]$ computed in $\mathcal{L}\left(P_{2}\right)^{-}$is $\mathcal{L}\left(H_{k}^{\prime}\right)^{-}$. Then the inductive hypothesis implies that $\left[\hat{0}, H_{k} \triangleright H_{k}^{\prime}\right]$ in \mathcal{L} is equal to $\mathcal{L}\left(H_{k} \triangleright H_{k}^{\prime}\right)$. This proves that $\mathcal{L}=\mathcal{L}\left(P_{1} \triangleright P_{2}\right)$.

One application of Theorem 4.12 is the following result on the f-numbers of $P_{1} \triangleright P_{2}$.
Corollary 4.13. Let $d \geq 2$ and $1 \leq i \leq d-1$. Let P_{1} and P_{2} be $(d-i)$-simplicial i-simple d-polytopes that can be merged along a simplex facet F of P_{1} and a simple vertex v of P_{2}. Then for all $0 \leq j \leq d-1, f_{j}\left(P_{1} \triangleright P_{2}\right)=f_{j}\left(P_{1}\right)+f_{j}\left(P_{2}\right)-\binom{d+1}{j+1}$.

Proof: First assume that $0 \leq j \leq d-i-1$. By definition of $\mathcal{L}\left(P_{1} \triangleright P_{2}\right)$, each j-face of F (i.e., each $(j+1)$-subset of $\left\{u_{1}, \ldots, u_{d}\right\}$), is identified with the corresponding j-face of F^{\prime} (i.e., the corresponding $(j+1)$-subset of $\left\{u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right\}$). In addition, all j-faces of P_{2} that contain v (i.e., all $(j+1)$-subsets of $\left\{v, u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right\}$ that contain v) are removed from $\mathcal{L}\left(P_{1} \triangleright P_{2}\right)$. Hence

$$
f_{j}\left(P_{1} \triangleright P_{2}\right)=f_{j}\left(P_{1}\right)+f_{j}\left(P_{2}\right)-\binom{d}{j+1}-\binom{d}{j}=f_{j}\left(P_{1}\right)+f_{j}\left(P_{2}\right)-\binom{d+1}{j+1}
$$

Similarly, for $d-i \leq j \leq d-1$, by definition of $\mathcal{L}\left(P_{1} \triangleright P_{2}\right)$, all j-faces of P_{1} contained in F (i.e., $(j+1)$-subsets of $\left.\left\{u_{1}, \ldots, u_{d}\right\}\right)$ are removed from $\mathcal{L}\left(P_{1} \triangleright P_{2}\right)$, while for each ($d-j$)-subset S of $[d]$, the j-face $\cap_{k \in S} H_{k}$ is identified with the j-face $\cap_{k \in S} H_{k}^{\prime}$. Hence $f_{j}\left(P_{1} \triangleright P_{2}\right)=f_{j}\left(P_{1}\right)+f_{j}\left(P_{2}\right)-\binom{d}{j+1}-\binom{d}{d-j}=f_{j}\left(P_{1}\right)+f_{j}\left(P_{2}\right)-\binom{d+1}{j+1}$.

5 Applications: part I

5.1 Infinite families of $(d-i)$-simplicial i-simple polytopes for small d

The goal of this section is to answer Question 4.8 in the affirmative for small values of d. Our starting point is the uniform 8 -polytope 2_{41} constructed within the symmetry of
the E_{8} group. (It was first discovered by Gosset and Elte; see also [6, Section 11]). This polytope has 17280 simplex facets and it is 4 -simplicial and 4 -simple. The polytope 2_{41} gives rise to the following 7-polytopes:

- Each nonsimplex facet of 2_{41} is the 7 -polytope 2_{31}. It is 4 -simplicial 3 -simple and it has 576 simplex facets.
- Each vertex figure of 2_{41} is the 7-demicube.

Recall that the d-demicube is defined as follows (see [8, Exercise 4.8.18]). Consider the d-cube $C_{d}=[0,1]^{d}$. For each vertex v in C_{d} whose coordinates have an even number of ones, truncate C_{d} along the hyperplane that contains all d vertices adjacent to v. The resulting polytope is called the d-demicube; we denote it by Q_{d}. This polytope has the following properties:

- When $d>4, Q_{d}$ has exactly 2^{d-1} simplex facets (these are the facets defined by truncating hyperplanes), and $2 d$ non-simplex facets (these are the facets obtained by truncating the facets of C_{d}). Moreover, no two simplex facets are adjacent in Q_{d}.
- When $d \geq 4, Q_{d}$ is 3 -simplicial and ($d-3$)-simple.

We are now in a position to prove the main result of this subsection:
Theorem 5.1. For every element of $\{(i, d): 2 \leq i \leq d-2 \leq 6\} \backslash\{(3,8),(5,8)\}$, there exists an infinite family of $(d-i)$-simplicial i-simple d-polytopes, each of which has a simplex facet and a simple vertex not in that facet.

Proof: By considering dual polytopes, it suffices to prove the statement for $i \leq d / 2 \leq 4$. The case of $i=2$ and an arbitrary $d \geq 4$ will be discussed in Section 6. For now, we mention that for $i=2$ and $d=4$, the result follows by applying Corollary 4.7 to P_{9}. (For the description of facets of P_{9}, see Construction 6.1.) Consider the case of $i=3$ and $d=6$. Since both Q_{6} and Q_{6}^{*} are 3 -simplicial 3 -simple, and since Q_{6} has a simplex facet (in fact, 32 of them) and Q_{6}^{*} has a simple vertex (in fact, 32 of them), the merge of Q_{6} and Q_{6}^{*}, $P=Q_{6} \triangleright Q_{6}^{*}$, is well-defined; furthermore, P has a simplex facet F and a simple vertex v not contained in F. Hence, Corollary 4.7 applies to P and results in a desired infinite family of 3 -simplicial 3 -simple 6 -polytopes. Similarly, in the case of $i=3$ and $d=7$, apply Corollary 4.7 to $P=2_{31} \triangleright Q_{7}^{*}$. Finally, in the case of $i=4$ and $d=8$, apply Corollary 4.7 to $P=2_{41} \triangleright 2_{41}^{*}$.

The proof of Theorem 5.1 provides the following partial answer to Question 4.8.
Corollary 5.2. Let $2 \leq i \leq 4$. There exists an infinite family of i-simplicial i-simple $2 i$-polytopes, each of which has a simplex facet and a simple vertex not in that facet.

5.2 Self-dual polytopes

Kalai [10, Problem 19.5.24] asked for which values of i and d there are self-dual i-simplicial d-polytopes other than the d-simplex. For the rest of this section, assume that $d=2 i$ and consider an i-simplicial i-simple $2 i$-polytope P with a simplex facet $F=\left[u_{1}, \ldots, u_{2 i}\right]$. As before, assume that H_{1}, \ldots, H_{d} are the facets of P adjacent to F, where $H_{k} \cap F=$ $\left[u_{1}, \ldots, \widehat{u_{k}}, \ldots, u_{d}\right]$. Let $\phi: \mathcal{L}(P) \rightarrow \mathcal{L}\left(P^{*}\right), \phi: \mathcal{L}\left(P^{*}\right) \rightarrow \mathcal{L}(P)$ be the order-reversing bijections on the face lattices. Then P^{*} is an i-simplicial i-simple $2 i$-polytope with a simple vertex $v:=\phi(F)$. The neighbors of v are $u_{k}^{\prime}:=\phi\left(H_{k}\right)$ for $1 \leq k \leq d$. Let H_{k}^{\prime} be the facet of P^{*} determined by the edges $v u_{1}^{\prime}, \ldots, \widehat{v u_{k}^{\prime}}, \ldots, v u_{d}^{\prime}$. In other words, $H_{k}^{\prime}=\left(\vee_{j \in[d] \backslash k} u_{j}^{\prime}\right) \vee v$, and hence

$$
\phi\left(H_{k}^{\prime}\right)=\left(\wedge_{j \in[d] \backslash k} \phi\left(u_{j}^{\prime}\right)\right) \wedge \phi(v)=\left(\wedge_{j \in[d] \backslash k} H_{j}\right) \wedge F=u_{k}
$$

The next proposition is our main tool for constructing self-dual i-simplicial i-simple $2 i$-polytopes. We follow assumptions and notation introduced in the previous paragraph.
Proposition 5.3. The merge of P and P^{*} along $F=\left[u_{1}, \ldots, u_{d}\right]$ and v (whose neighbors are ordered as $u_{1}^{\prime}, \ldots, u_{d}^{\prime}$) is a self-dual polytope.

Proof: The map $\phi: \mathcal{L}(P) \rightarrow \mathcal{L}\left(P^{*}\right), \mathcal{L}\left(P^{*}\right) \rightarrow \mathcal{L}(P)$ provides us with an order-reversing involution on $\mathcal{L}(P) \sqcup \mathcal{L}\left(P^{*}\right)$. Since $\phi\left(H_{k}\right)=u_{k}^{\prime}$ and $\phi\left(H_{k}^{\prime}\right)=u_{k}$, it follows that for $S \subseteq[d]$,

$$
\begin{equation*}
\phi\left(\vee_{k \in S} u_{k}\right)=\wedge_{k \in S} H_{k}^{\prime}, \quad \phi\left(\vee_{k \in S} u_{k}^{\prime}\right)=\wedge_{k \in S} H_{k} . \tag{5.1}
\end{equation*}
$$

In particular, ϕ maps ℓ-faces of F to $(d-\ell-1)$-faces containing v. Since $d=2 i$, it follows that ϕ induces an order-reversing involution on $\mathcal{L}(P)^{-} \sqcup \mathcal{L}\left(P^{*}\right)^{-}$. Furthermore, by (5.1), this involution descends to an order-reversing involution on the quotient \mathcal{L} described in Definition 4.10. Thus \mathcal{L} is a self-dual lattice. The result follows since by Theorem 4.12, $\mathcal{L}=\mathcal{L}\left(P \triangleright P^{*}\right)$.

Theorem 5.4. For all $2 \leq i \leq 4$, there exists an infinite family of self-dual i-simplicial $2 i$-polytopes.

Proof: Let $2 \leq i \leq 4$. By Corollary 5.2 , there exists an infinite family of i-simplicial i-simple $2 i$-polytopes each of which has a simplex facet. The result follows by applying Proposition 5.3 to this family.

6 Applications: part II

This section is devoted to ($d-2$)-simplicial 2 -simple d-polytopes for all $d \geq 4$. We show that for such values of parameters, the answer to Question 4.8 is yes, and, in fact, that for every $d \geq 4$, there are $2^{\Omega(N)}$ combinatorial types of $(d-2)$-simplicial 2 -simple d-polytopes with at most N vertices, each of which has a simplex facet and a simple vertex. Section 6.1 concentrates on a few constructions for $d=4$; Section 6.2 treats the general case.

6.1 Revisitng 2-simplicial 2-simple 4-polytopes

By a result of Paffenholz and Werner [12], there exist infinite families of 2-simplicial 2simple 4-polytopes each of which has a simplex facet and a simple vertex. This solves Question 4.8 in the affirmative in dimension $d=4$.

In this section, we provide alternative (and more symmetric) constructions. We start by revisiting the construction from [12] of P_{9} - the unique 2-simplicial 2-simple 4-polytope with nine vertices - casting it in a way that will help us construct higher-dimensional analogs of P_{9} in Section 6.2. We then provide another construction of a highly symmetric 2-simplicial 2 -simple 4 -polytope with 18 vertices that appears to be new. The promised infinite families are obtained by merging k copies of P_{9} (respectively, P_{18}) for all natural numbers $k \geq 2$. The cross-polytope is featured prominently in our constructions, and we often abbreviate it as CP. (The notion of a point beyond or beneath a facet is defined in [8, page 78].)

Construction 6.1. To construct P_{9}, start with a regular 4-simplex $\Sigma:=\left[u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}, u_{5}^{\prime}\right]$. Now add the vertices $u_{1}, u_{2}, u_{3}, v_{2}$ in the following way. (Why we label the vertices in this fashion will become clear in Section 6.2.) For $i=1,2,3$, place u_{i} in the affine hull of the facet $\Sigma \backslash u_{i}^{\prime}$ of Σ so that it is positioned beyond the 2 -face $\Sigma \backslash u_{i}^{\prime} u_{5}^{\prime}$ and so that $\left[u_{1}, u_{2}, u_{3}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right]$ is a 3 -cross-polytope; cf. Definition 6.8 below. (Hence u_{i} can be thought of as a perturbation of the barycenter of $\left[u_{j}^{\prime}, u_{k}^{\prime}, u_{\ell}^{\prime}\right]$, where $\{i, j, k, \ell\}=[4]$.) Then position v_{2} on the intersection of the affine hulls of $\left[u_{1}^{\prime}, u_{4}^{\prime}, u_{2}, u_{3}\right],\left[u_{2}^{\prime}, u_{4}^{\prime}, u_{1}, u_{3}\right]$, and $\left[u_{3}^{\prime}, u_{4}^{\prime}, u_{1}, u_{2}\right]$ (this intersection is a line) and beyond the hyperplane $\operatorname{aff}\left(u_{4}^{\prime}, u_{1}, u_{2}, u_{3}\right)$; cf. Definitions 6.7 and 6.9. (Thus, v_{2} is a special perturbation of the barycenter of $\left.\left[u_{1}, u_{2}, u_{3}, u_{4}^{\prime}\right]\right)$.

The resulting polytope has nine vertices $\left\{v_{2}, u_{1}, u_{2}, u_{3}, u_{1}^{\prime}, \ldots, u_{5}^{\prime}\right\}$; it is also convenient to let $v_{1}=u_{4}^{\prime}$. Figure 2 shows part of the Schlegel diagram of $P_{9}^{\prime}=\operatorname{conv}\left(V\left(P_{9}\right) \backslash u_{5}^{\prime}\right)$. The complete list of facets of P_{9} is given as follows (cf. Lemma 6.10):

1. a CP with antipodal facets $\left[u_{1}, u_{2}, u_{3}\right]$ and $\left[u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right]$ (colored in blue) and a simplex $\left[u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{5}^{\prime}\right]$;
2. three bipyramids $\left[u_{1}, u_{5}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}\right]$, $\left[u_{2}, u_{5}^{\prime}, u_{1}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}\right]$, and $\left[u_{3}, u_{5}^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, u_{4}^{\prime}\right]$, where the pairs of suspension vertices are $\left(u_{1}, u_{5}^{\prime}\right),\left(u_{2}, u_{5}^{\prime}\right)$, and $\left(u_{3}, u_{5}^{\prime}\right)$, respectively;
3. three more bipyramids $\left[v_{2}, u_{1}^{\prime}, u_{2}, u_{3}, v_{1}\right]$ (colored in purple), $\left[v_{2}, u_{2}^{\prime}, u_{1}, u_{3}, v_{1}\right]$, and [$\left.v_{2}, u_{3}^{\prime}, u_{1}, u_{2}, v_{1}\right]$, where the pairs of suspension vertices are $\left(v_{2}, u_{1}^{\prime}\right),\left(v_{2}, u_{2}^{\prime}\right)$, and $\left(v_{2}, u_{3}^{\prime}\right)$, respectively;
4. another simplex $\left[v_{2}, u_{1}, u_{2}, u_{3}\right]$ (colored in orange).

The list of facets shows that P_{9} is 2 -simplicial. The f-vector of P_{9} is symmetric, namely, $f\left(P_{9}\right)=(9,26,26,9)$. Thus, by Corollary 3.2, P_{9} is also 2-simple. Furthermore, P_{9} has two pairs of a simplex facet and a simple vertex not in that facet: ($\left[v_{2}, u_{1}, u_{2}, u_{3}\right], u_{5}^{\prime}$) and

Figure 2: Parts of the Schlegel diagrams of P_{9}^{\prime}.
($\left[u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{5}^{\prime}\right], v_{2}$). Take two copies of P_{9}, P_{9}^{l} and P_{9}^{r}, and consider the merge $P_{9}^{l} \triangleright P_{9}^{r}$ along $\left[v_{2}, u_{1}, u_{2}, u_{3}\right]$ from P_{9}^{l} and u_{5}^{\prime} from P_{9}^{r}. Since the facets of P_{9} containing u_{5}^{\prime} consist of a simplex and three bipyramids, depending on the order in which we list the neighbors of u_{5}^{\prime}, the cross-polytopal facet of P_{9}^{l} will either be merged with a 3 -simplex or with a bipyramid of P_{9}^{r}, resulting in two distinct combinatorial types of 2 -simplicial 2 -simple 4 -polytopes, each of which has a simplex facet and a simple vertex not in that facet. This observation will allow us to construct exponentially many (in the number of vertices) 2 -simplicial 2 simple 4 -polytopes. We will return to this discussion (and provide many more details) in Section 6.2 after we construct a d-dimensional analog of P_{9} for all $d \geq 4$; see Theorem 6.13 and Remark 6.14.

How does merging with P_{9} affect the f-numbers? Let Q be a 2 -simplicial 2 -simple 4-polytope that has a simplex facet and a simple vertex not in this facet (for instance, $Q=P_{9}$). Then $P_{9} \triangleright Q$ and $Q \triangleright P_{9}$ are both defined and by Corollary 4.13,

$$
\begin{aligned}
f\left(P_{9} \triangleright Q\right)-f(Q)=f\left(Q \triangleright P_{9}\right)-f(Q) & =f\left(P_{9}\right)-\left(\binom{5}{1},\binom{5}{2},\binom{5}{3},\binom{5}{4}\right) \\
& =(9,26,26,9)-(5,10,10,5)=(4,16,16,4) .
\end{aligned}
$$

Recall that the toric g_{2}-number of a 2 -simplicial 4-polytope is given by $g_{2}^{\text {toric }}=f_{1}-4 f_{0}+10$ and that any polytope with $g_{2}^{\text {toric }}=0$ is called an elementary polytope. It then follows that P_{9} is an elementary polytope and that $g_{2}^{\text {toric }}\left(P_{9} \triangleright Q\right)=g_{2}^{\text {toric }}\left(Q \triangleright P_{9}\right)=g_{2}^{\text {toric }}(Q)$. In other words, if Q is also an elementary polytope, then so are $P_{9} \triangleright Q$ and $Q \triangleright P_{9}$. (Elementary polytopes play an important role in the Lower Bound Theorem, see [9].)

It is worth pointing out that if one applies to Q the second construction from [12, Section 3.2], the resulting polytope $\mathcal{I}^{2}(Q)$ has the same f-vector as $f\left(P_{9} \triangleright Q\right)=f\left(Q \triangleright P_{9}\right)$; see [12, Theorem 3.7]. At the same time, both polytopes $P_{9} \triangleright Q$ and $Q \triangleright P_{9}$ are different from $\mathcal{I}^{2}(Q)$. Indeed, merging with P_{9}, on the left or on the right, always generates a facet (contributed by the cross-polytopal facet of P_{9}) that is isomorphic to either CP or the connected sum of CP with another 3-polytope, while in the second construction of [12], all new facets are stacked 3 -polytopes with either 4,5 , or 6 vertices.

Our next task is to describe another highly-neighborly 2 -simplicial 2 -simple 4 -polytope with a simplex facet and a simple vertex. This polytope has 18 vertices and we denote it by P_{18}.
Construction 6.2. We start with a regular 3 -simplex $F=\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$ in $\mathbb{R}^{3} \times\{0\}$. Specifically, let

$$
\begin{equation*}
v_{1}=(0,0,0,0), v_{2}=(2,2,0,0), v_{3}=(2,0,2,0), v_{4}=(0,2,2,0) . \tag{6.1}
\end{equation*}
$$

Define $u=(1,1,1, h)$ for some $h>0$. Let $0<\epsilon \ll 1$. For all distinct $1 \leq i, j, k \leq 4$, let

$$
u_{j i, k}=u_{i j, k}=\frac{1}{2}\left(v_{i}+v_{j}\right)+\epsilon\left(u+v_{k}-v_{i}-v_{j}\right) .
$$

That is,

$$
\begin{gathered}
u_{12,3}=(1+\epsilon, 1-\epsilon, 3 \epsilon, h \epsilon), u_{12,4}=(1-\epsilon, 1+\epsilon, 3 \epsilon, h \epsilon), u_{13,2}=(1+\epsilon, 3 \epsilon, 1-\epsilon, h \epsilon), \\
u_{13,4}=(1-\epsilon, 3 \epsilon, 1+\epsilon, h \epsilon), u_{14,2}=(3 \epsilon, 1+\epsilon, 1-\epsilon, h \epsilon), u_{14,3}=(3 \epsilon, 1-\epsilon, 1+\epsilon, h \epsilon), \\
u_{23,1}=(2-3 \epsilon, 1-\epsilon, 1-\epsilon, h \epsilon), u_{23,4}=(2-3 \epsilon, 1+\epsilon, 1+\epsilon, h \epsilon), u_{24,1}=(1-\epsilon, 2-3 \epsilon, 1-\epsilon, h \epsilon), \\
u_{24,3}=(1+\epsilon, 2-3 \epsilon, 1+\epsilon, h \epsilon), u_{34,1}=(1-\epsilon, 1-\epsilon, 2-3 \epsilon, h \epsilon), u_{34,2}=(1+\epsilon, 1+\epsilon, 2-3 \epsilon, h \epsilon) .
\end{gathered}
$$

Note that each $u_{i j, k}$ can be viewed as a certain perturbation of the barycenter of $\left[v_{i}, v_{j}\right]$ that keeps it in the hyperplane defined by $\left[u, v_{i}, v_{j}, v_{k}\right]$. Note also that the set of vertices $\left\{u_{1 i, j}:\{i, j\} \in\{2,3,4\}\right\}$ forms a hexagon H_{1} that lies in the plane defined by equations $x_{1}+x_{2}+x_{3}=2+3 \epsilon, x_{4}=h \epsilon$. Similarly, the sets of vertices

$$
\left\{u_{2 i, j}:\{i, j\} \in\{1,3,4\}\right\},\left\{u_{3 i, j}:\{i, j\} \in\{1,2,4\}\right\}, \text { and }\left\{u_{4 i, j}:\{i, j\} \in\{1,2,3\}\right\}
$$

form hexagons H_{2}, H_{3}, H_{4} in the planes defined by equations

$$
\begin{array}{r}
\left\{x_{1}+x_{2}-x_{3}=2-3 \epsilon, x_{4}=h \epsilon\right\}, \quad\left\{x_{1}-x_{2}+x_{3}=2-3 \epsilon, x_{4}=h \epsilon\right\}, \quad \text { and } \\
\left\{-x_{1}+x_{2}+x_{3}=2-3 \epsilon, x_{4}=h \epsilon\right\},
\end{array}
$$

respectively. It follows that

$$
\begin{aligned}
& \operatorname{aff}\left(v_{1} \cup H_{1}\right)=\left\{\mathbf{x} \in \mathbb{R}^{4}:-h \epsilon\left(x_{1}+x_{2}+x_{3}\right)+(2+3 \epsilon) x_{4}=0\right\}, \\
& \operatorname{aff}\left(v_{2} \cup H_{2}\right)=\left\{\mathbf{x} \in \mathbb{R}^{4}: h \epsilon\left(x_{1}+x_{2}-x_{3}\right)+(2+3 \epsilon) x_{4}=4 h \epsilon\right\}, \\
& \operatorname{aff}\left(v_{3} \cup H_{3}\right)=\left\{\mathbf{x} \in \mathbb{R}^{4}: h \epsilon\left(x_{1}+x_{3}-x_{2}\right)+(2+3 \epsilon) x_{4}=4 h \epsilon\right\}, \\
& \operatorname{aff}\left(v_{4} \cup H_{4}\right)=\left\{\mathbf{x} \in \mathbb{R}^{4}: h \epsilon\left(x_{2}+x_{3}-x_{1}\right)+(2+3 \epsilon) x_{4}=4 h \epsilon\right\} .
\end{aligned}
$$

The intersection of these four hyperplanes is the point $\left(1,1,1, \frac{3 h \epsilon}{2+3 \epsilon}\right)$; we denote it by w.

Figure 3: Parts of the Schlegel diagrams of P_{18}^{\prime}.

Define P_{18}^{\prime} as the convex hull of all 17 vertices $\left\{w, v_{1}, \ldots, v_{4}, u_{i j, k}: 1 \leq i, j, k \leq 4\right\}$. When ϵ is very small, the polytope P_{18}^{\prime} has the following 19 facets (see Figure 3 for part of the Schlegel diagram). We used $\epsilon=0.05, h=2$ and verified this list with software SAGE.

1. Six simplices of the form $\left[v_{i}, v_{j}, u_{i j, k}, u_{i j, m}\right]$, where $\{i, j, k, m\}=[4]$. Parts of four of them are shown in blue in Figure 3.
2. Four simplices of the form $\left[u_{i j, k}, u_{i k, j}, u_{j k, i}, w\right]$, where $1 \leq i, j, k \leq 4$ are distinct. One such simplex is shown in purple in Figure 3.
3. The simplex $\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$.
4. Four polytopes of the form $\left[v_{i}, w, u_{i j, k}, u_{i j, m}, u_{i k, j}, u_{i k, m}, u_{i m, j}, u_{i m, k}\right]$. Each is the suspension over H_{i}, with suspension vertices v_{i} and w. (Here $\{i, j, k, m\}=[4]$.) One such polytope is shown in orange in Figure 3.
5. Four cross-polytopes of the form $\left[v_{i}, v_{j}, v_{k}, u_{i j, k}, u_{i k, j}, u_{j k, i}\right]$, where $1 \leq i, j, k \leq 4$ are distinct.

To complete the construction of P_{18}, we apply a projective transformation π to P_{18}^{\prime} to ensure that the adjacent facets of $G=\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$, i.e., the four cross-polytopes from the last item, intersect at a point w^{\prime} beyond G. We let $P_{18}=\operatorname{conv}\left(\pi\left(P_{18}^{\prime}\right) \cup w^{\prime}\right)$. Then G is not a facet of P_{18} and each facet $\left[v_{i}, v_{j}, v_{k}, u_{i j, k}, u_{i k, j}, u_{j k, i}\right]$ is replaced by its connected sum with $\left[v_{i}, v_{j}, v_{k}, w^{\prime}\right]$. It can be checked that $f\left(P_{18}\right)=(18,64,64,18)$. Since P_{18} is a 2 simplicial 4 -polytope that has $f_{1}=f_{2}$, it follows by Corollary 3.2 that P_{18} is also 2 -simple. A direct computation shows that $g_{2}^{\text {toric }}\left(P_{18}\right)=2$. In other words, P_{18} is not elementary.

Observe that P_{18} has a simple vertex w^{\prime} and many simplex facets not containing w^{\prime} (see the first item in the list). Thus we can iteratively merge P_{18} with itself and obtain an infinite sequence of 2 -simplicial 2 -simple 4 -polytopes, each having at least one simplex facet and one simple vertex. By Corollary 4.13, any polytope obtained by merging $k \geq 1$ copies of P_{18} will have $5+13 k$ vertices and $g_{2}^{\text {toric }}=2 k$. Other families of 2 -simplicial 2-simple 4 -polytopes where the k th polytope has $g_{2}^{\text {toric }}=2 k$ (but $f_{0}=10+4 k$) were constructed in [13, Corollary 4.2].

To close this section, we propose the following problem.
Question 6.3. Is there a sequence of 2-simplicial 2-simple 4-polytopes that approximate the unit ball?

In light of [1, Theorem 3.2], it is natural to conjecture that if such a sequence of 4-polytopes $\left\{Q_{i}\right\}$ exists, then $\lim _{i \rightarrow \infty} g_{2}^{\text {toric }}\left(Q_{i}\right)=\infty$.

6.2 Many ($d-2$)-simplicial 2-simple d-polytopes

In this section we construct a d-dimensional analog of P_{9} for all $d \geq 4$. We then use this polytope along with Corollary 4.7 to show that there are $2^{\Omega(N)}$ combinatorial types of ($d-2$)-simplicial 2 -simple d-polytopes with at most N vertices and an additional property that each of these polytopes has a simplex facet and a simple vertex.

As in Section 6.1, the d - and $(d-1)$-dimensional cross-polytopes are used frequently, and we abbreviate them as CP. To start, we introduce the notion of a pseudo-regular CP and prove some of its properties. Let $\mathbf{0}$ denote the origin of \mathbb{R}^{d-1}.

Definition 6.4. Let $G \subset \mathbb{R}^{d-1}$ be a regular $(d-1)$-simplex centered at the origin, let $G^{*} \subset \mathbb{R}^{d-1}$ be the dual of G, and let $\alpha>0$ be a real number. Assume also that G is contained in the interior of αG^{*}, denoted $\operatorname{int}\left(\alpha G^{*}\right)$. A d-cross-polytope is called pseudoregular if it is congruent to $\operatorname{conv}\left(G \times\{1\} \cup \alpha G^{*} \times\{-1\}\right)$.

Consider a regular simplex $G=\left[\mu_{1}, \ldots, \mu_{d}\right] \subset \mathbb{R}^{d-1}$ centered at the origin and let $\alpha>0$. Then $\alpha G^{*}=\left[\mu_{1}^{\prime}, \ldots, \mu_{d}^{\prime}\right] \subset \mathbb{R}^{d-1}$ is also a regular simplex centered at the origin. We label the vertices in such a way that μ_{i}^{\prime} is an outer normal vector to the facet $\left[\mu_{1}, \ldots, \widehat{\mu_{i}}, \ldots, \mu_{d}\right]$ of G. By our assumptions on G, this is equivalent to labeling the vertices so that for all $i \in[d], \mu_{i}^{\prime}=a \sum_{j \in[d] \backslash i} \mu_{j}=-a \mu_{i}$, where a is a positive scalar independent of i.

For a nonempty subset I of $[d]$, let $G_{I}=\left[\mu_{i}: i \in I\right]$ be a face of G and $G_{I}^{\prime}=\left[\mu_{i}^{\prime}: i \in I\right]$ be a face of αG^{*}; let $\beta_{I}=\frac{1}{|I|} \sum_{i \in I} \mu_{i}$ be the barycenter of G_{I} and $\beta_{I}^{\prime}=\frac{1}{|I|} \sum_{i \in I} \mu_{i}^{\prime}$ be the barycenter of G_{I}^{\prime}. Since for all $i \in[d], \mu_{i}^{\prime}=a \sum_{j \in[d] \backslash i} \mu_{j}=-a \mu_{i}$, it follows that for any proper subset I of $[d], \sum_{i \in I} \mu_{i}=-\frac{1}{a} \sum_{i \in I} \mu_{i}^{\prime}=\frac{1}{a} \sum_{j \in[d] \backslash I} \mu_{j}^{\prime}$. Thus, β_{I} is a positive multiple of $\beta_{[d] \backslash I}^{\prime}$, and so the ray from $\mathbf{0}$ and through β_{I} coincides with the ray from $\mathbf{0}$ and through $\beta_{[d] \backslash I}^{\prime}$. Furthermore, since G is regular, the distance from $\mathbf{0}$ to β_{I} is the same for all k-subsets I of $[d]$; we denote it by ρ_{k} and note that $\rho_{1}>\cdots>\rho_{d-1}$. Similarly, for all
k-subsets J of $[d]$, the distance from $\mathbf{0}$ to β_{J}^{\prime} is the same number ρ_{k}^{\prime}, where $\rho_{1}^{\prime}>\cdots>\rho_{d-1}^{\prime}$. Finally, since $G \subset \operatorname{int}\left(\alpha G^{*}\right), \rho_{d-1}^{\prime}>\rho_{1}$. To summarize,

$$
\begin{equation*}
\rho_{1}^{\prime}>\cdots>\rho_{d-1}^{\prime}>\rho_{1}>\cdots>\rho_{d-1} \tag{6.2}
\end{equation*}
$$

Consider the d-cross-polytope $\mathrm{CP}=\operatorname{conv}\left(G \times\{1\} \cup \alpha G^{*} \times\{-1\}\right)$. We label the vertices of CP by $u_{j}=\left(\mu_{j}, 1\right)$ and $u_{j}^{\prime}=\left(\mu_{j}^{\prime},-1\right)($ for $j=1, \ldots, d)$, so that $G \times\{1\}=\left[u_{1}, \ldots, u_{d}\right]$ and $\alpha G^{*} \times\{-1\}=\left[u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right]$. For a subset I of $[d]$, we denote the barycenter of $G_{I} \times\{1\}$ by b_{I} and the barycenter of and $G_{I}^{\prime} \times\{-1\}$ by b_{I}^{\prime}. Finally, we let H_{I} denote the hyperplane in \mathbb{R}^{d} determined by the following set of d points: $\left\{u_{i}: i \in I\right\} \cup\left\{u_{j}^{\prime}: j \in[d] \backslash I\right\}$.

Lemma 6.5. Let $0 \leq k \leq d$. Then all hyperplanes H_{I}, where $I \subseteq[d],|I|=k$, intersect the x_{d}-axis at the same point. When $0<k<d$, the dth coordinate of this point is >1.

Proof: First note that $H_{[d]}$ and H_{\emptyset} intersect the x_{d}-axis at $\mathbf{e}_{d}:=(0, \ldots, 0,1)$ and $-\mathbf{e}_{d}$, respectively. Now let I be any k-subset of $[d]$, where $1 \leq k \leq d-1$. Consider the points b_{I} and $b_{[d] \backslash I}^{\prime}$. Both of them lie in H_{I}; hence, so does the line $\ell=\operatorname{aff}\left(b_{I}, b_{[d] \backslash I}^{\prime}\right)$.

We claim that ℓ intersects the x_{d}-axis. Consequently,

$$
H_{I} \cap x_{d} \text {-axis }=\ell \cap x_{d} \text {-axis. }
$$

To prove the claim, consider the lines aff $\left(\mathbf{e}_{d}, b_{I}\right)$ and $\operatorname{aff}\left(-\mathbf{e}_{d}, b_{[d] \backslash I}^{\prime}\right)$. By discussion following Definition 6.4, these lines are parallel, and thus determine a 2 -dimensional plane \mathcal{L}. For the rest of the proof, we work in this plane. It contains ℓ and the x_{d}-axis. Also, since, β_{I} is a positive multiple of $\beta_{[d] \backslash I}^{\prime}$, the points b_{I} and $b_{[d] \backslash I}^{\prime}$ lie on the same side of the x_{d}-axis in \mathcal{L}. Finally, since the distance from b_{I} to the x_{d}-axis is ρ_{k}, the distance from $b_{[d] \backslash I}^{\prime}$ to the x_{d}-axis is ρ_{d-k}^{\prime}, and $\rho_{d-k}^{\prime}>\rho_{k}$, it follows that ℓ and the x_{d}-axis are not parallel. Hence they intersect and the point of intersection, which we denote by $a_{I}=\left(0, \ldots, 0, c_{I}\right)$, satisfies $c_{I}>1$. This proves the claim.

To complete the proof of the lemma, it remains to show that c_{I} depends only on $|I|=k$. Indeed, consider triangles $\left[a_{I}, \mathbf{e}_{d}, b_{I}\right]$ and $\left[a_{I},-\mathbf{e}_{d}, b_{[d] \backslash I}^{\prime}\right]$. They are similar; hence,

$$
\frac{c_{I}-1}{\rho_{k}}=\frac{\operatorname{dist}\left(a_{I}, \mathbf{e}_{d}\right)}{\operatorname{dist}\left(\mathbf{e}_{d}, b_{I}\right)}=\frac{\operatorname{dist}\left(a_{I},-\mathbf{e}_{d}\right)}{\operatorname{dist}\left(-\mathbf{e}_{d}, b_{[d] \backslash I}^{\prime}\right)}=\frac{c_{I}+1}{\rho_{d-k}^{\prime}} .
$$

Solving this equation yields $c_{I}=\frac{\rho_{d-k}^{\prime}+\rho_{k}}{\rho_{d-k}^{\prime}-\rho_{k}}$. The result follows.
Let $0 \leq k \leq d$. In view of Lemma 6.5, we denote by a_{k} the point of intersection of H_{I} and the x_{d}-axis, where I is any subset of $[d]$ of size k, and by $c_{k}:=\frac{\rho_{d-k}^{\prime}+\rho_{k}}{\rho_{d-k}^{\prime}-\rho_{k}}$ the last coordinate of a_{k}; see Figure 4 for an illustration in dimension 3.

Figure 4: Left: a pseudo-regular CP of dimension 3 and the points $\left\{a_{0}, \ldots, a_{3}\right\}$. Right: The polytope $P^{3,1}$.

Corollary 6.6. The heights of points a_{1}, \ldots, a_{d} satisfy $c_{1}>\cdots>c_{d-1}>c_{d}=1$. In particular, if q is a point on the x_{d}-axis that lies strictly between a_{k-1} and a_{k}, then q is beneath the facet $H_{I}=\left[u_{i}, u_{j}^{\prime}: i \in I, j \in[d] \backslash I\right]$ of the $C P$ if $|I| \leq k-1$, and beyond the facet H_{I} if $|I| \geq k$.

Proof: By equation (6.2), for all $1 \leq k \leq d-1, \rho_{d-k}^{\prime}-\rho_{k}>0$. Hence $c_{k}=\frac{\rho_{d-k}^{\prime}+\rho_{k}}{\rho_{d-k}^{\prime}-\rho_{k}}>$ $1=c_{d}$. Furthermore, for $2 \leq k \leq d-1$,

$$
\begin{aligned}
& c_{k}-c_{k-1}=\frac{\rho_{d-k}^{\prime}+\rho_{k}}{\rho_{d-k}^{\prime}-\rho_{k}}-\frac{\rho_{d-k+1}^{\prime}+\rho_{k-1}}{\rho_{d-k+1}^{\prime}-\rho_{k-1}} \\
= & 2\left(\frac{\rho_{k}}{\rho_{d-k}^{\prime}-\rho_{k}}-\frac{\rho_{k-1}}{\rho_{d-k+1}^{\prime}-\rho_{k-1}}\right) \\
= & 2\left(\frac{1}{\frac{\rho_{d-k}^{\prime}}{\rho_{k}}-1}-\frac{1}{\frac{\rho_{d-k+1}^{\prime}}{\rho_{k-1}}-1}\right)<0,
\end{aligned}
$$

where the last step follows from the fact that $\rho_{d-k}^{\prime}>\rho_{d-k+1}^{\prime}>\rho_{k-1}>\rho_{k}$; see eq. (6.2).
Definition 6.7. Let $\mathrm{CP}=\operatorname{conv}\left(G \times\{1\} \cup \alpha G^{*} \times\{-1\}\right)$ be a pseudo-regular d-crosspolytope. The set $\left\{a_{k}=\cap_{I \subset[d]], I \mid=k} H_{I}: 1 \leq k \leq d\right\}$ is called the sequence of points associated with CP.

Our construction of a $(d-2)$-simplicial 2 -simple polytope starts with a certain d polytope $P^{d, 1}$ described in Definition 6.8 and proceeds by recursively adding to $P^{d, 1}$ a total of $d-3$ additional vertices; see Figure 4 for an illustration of $P^{3,1}$. As we will see below, one of the facets of $P^{d, 1}$ is a pseudo-regular CP (of dimension $d-1$). By a slight abuse of notation, we continue to label the vertices of this facet by $u_{1}, \ldots, u_{d-1}, u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}$.
Definition 6.8. Let $\Sigma=\left[u_{1}^{\prime}, \ldots, u_{d+1}^{\prime}\right]$ be a regular d-simplex. Choose an arbitrary $0<$ $\epsilon \ll \operatorname{dist}\left(u_{1}^{\prime}, u_{2}^{\prime}\right)$. For $1 \leq i \leq d-1$, let p_{i} be the barycenter of the ($d-2$)-face $\Sigma \backslash u_{i}^{\prime} u_{d+1}^{\prime}$, and let $u_{i}:=p_{i}+\epsilon\left(p_{i}-u_{d+1}^{\prime}\right)$. We define $P^{d, 1}$ as $\operatorname{conv}\left(u_{1}^{\prime}, \ldots, u_{d+1}^{\prime}, u_{1}, \ldots, u_{d-1}\right)$.

Since p_{i} is the barycenter of the $(d-2)$-face $\Sigma \backslash u_{i}^{\prime} u_{d+1}^{\prime}$, it follows that $\left[p_{1}, \ldots, p_{d-1}\right]$ is a regular $(d-2)$-simplex and $\left[p_{1}, \ldots, p_{d-1}, u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}\right]$ is a pseudo-regular $(d-1)$-crosspolytope. By our choice of $u_{i},\left[u_{1}, \ldots, u_{d-1}\right]$ is a regular $(d-2)$-simplex obtained from [p_{1}, \ldots, p_{d-1}] by dilation with factor $(1+\epsilon)$ (where ϵ is small) followed by translation in the direction perpendicular to $\operatorname{aff}\left(p_{1}, \ldots, p_{d-1}, u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}\right)=\operatorname{aff}\left(\Sigma \backslash u_{d+1}^{\prime}\right)$. In particular, $\operatorname{aff}\left(u_{1}, \ldots, u_{d-1}\right)$ is parallel to aff $\left(u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}\right)$ and $\mathrm{CP}:=\left[u_{1}, \ldots, u_{d-1}, u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}\right]$ is also a pseudo-regular $(d-1)$-cross-polytope.

This discussion shows that the polytope $P^{d, 1}$ is the union of the simplex Σ and the pyramid with apex u_{d}^{\prime} over the cross-polytope CP (glued along the simplex $\left[u_{1}^{\prime}, \ldots, u_{d}^{\prime}\right]$). Furthermore, for each $1 \leq i \leq d-1$, the points $\left\{u_{i}, u_{1}^{\prime}, \ldots, \widehat{u_{i}^{\prime}}, \ldots, u_{d}^{\prime}, u_{d+1}^{\prime}\right\}$ lie in the same hyperplane, and, in this hyperplane, the sets $\operatorname{conv}\left(u_{i}, u_{d+1}^{\prime}\right)$ and $\operatorname{conv}\left(u_{1}^{\prime}, \ldots, \widehat{u_{i}^{\prime}}, \ldots u_{d}^{\prime}\right)$ intersect in their relative interiors. For $1 \leq k \leq d-1$, let \mathcal{H}_{k} be the set of facets H of CP with $\left|H \cap\left\{u_{1}, \ldots, u_{d-1}\right\}\right|=k$. (Each such H is a $(d-2)$-face of $P^{d, 1}$.) Also, let $H^{+}:=H \cap\left[u_{1}, \ldots, u_{d-1}\right]$ and $H^{-}:=H \cap\left[u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}\right]$. Let $v_{0}:=u_{d+1}^{\prime}$ and $v_{1}:=u_{d}^{\prime}$. It follows that $P^{d, 1}$ has the following facets:

1. The simplex $\Sigma \backslash u_{d}^{\prime}$ and the pseudo-regular cross-polytope CP.
2. $d-1$ bipyramids of the form $\operatorname{conv}\left(H \cup\left\{v_{0}, v_{1}\right\}\right)$, where $H \in \mathcal{H}_{1}$; the boundary complex of such facet is $\partial\left(\overline{V\left(H^{+}\right) \cup v_{0}}\right) * \partial\left(\overline{V\left(H^{-}\right) \cup v_{1}}\right)$.
3. $2^{d-1}-d$ simplex facets of the form $\operatorname{conv}\left(H \cup v_{1}\right)$, where $H \in \cup_{2 \leq k \leq d-1} \mathcal{H}_{k}$.

In particular, CP is adjacent to all other facets of $P^{d, 1}$.
Since CP is pseudo-regular, by Lemma 6.5, there is a sequence of points associated with CP (lying in $\operatorname{aff}(\mathrm{CP})): a_{i}=\cap_{F \in \mathcal{H}_{i}} \operatorname{aff}(F), 1 \leq i \leq d-1$; see Definition 6.7. The points $\left\{a_{i}: 1 \leq i \leq d-1\right\}$ all lie on the line through the barycenters $b_{[d-1]}$ of $\left[u_{1}, \ldots, u_{d-1}\right]$ and $b_{[d-1]}^{\prime}$ of $\left[u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}\right]$, and, according to Corollary 6.6, they appear on this line in the order $a_{1}, \ldots, a_{d-2}, a_{d-1}$, with a_{d-2} closest to $a_{d-1}=b_{[d-1]}$ and a_{1} farthest from $b_{[d-1]}$.

We are now ready for the main definition of this section:
Definition 6.9. Consider the sequence of points $\left\{a_{i}: 1 \leq i \leq d-2\right\}$ associated with the facet $\mathrm{CP}=\left[u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}, u_{1}, \ldots, u_{d-1}\right]$ of $P^{d, 1}$. Let $v_{1}=u_{d}^{\prime}$. Inductively, for $2 \leq$

Figure 5: Left: The pyramid over a hexagon H symmetric about the line ℓ. Right: A new 3 -polytope obtained by adding vertices v_{2} and v_{3}, with v_{i+1} in the interior of the line segment $\left[q_{i+1}, v_{i}\right]$; here q_{i+1} is the intersection of affine spans of the appropriate symmetric edges of H.
$i \leq d-2$, choose a point v_{i} in the relative interior of the line segment $\left[a_{i}, v_{i-1}\right]$ and let $P^{d, i}=\operatorname{conv}\left(P^{d, i-1} \cup v_{i}\right)$. Finally, let $P^{d}=P^{d, d-2}$.

The process of adding vertices similar to the one described in Definition 6.9 is illustrated in Figure 5, where the vertices are added to the pyramid over a hexagon. (Unfortunately, Definition 6.9 itself is non-vacuous only when $d \geq 4$, and as such is hard to illustrate.)

Our next goal is to prove that P^{d} is the promised high-dimensional analog of the 4polytope P_{9}; see Theorem 6.11. This requires describing the facets of P^{d}. We do so by induction, showing that for $2 \leq k \leq d-2$, the set of facets of $P^{d, k}$ is obtained from that of $P^{d, k-1}$ as follows.

1. For each $H \in \cup_{k+1 \leq i \leq d-1} \mathcal{H}_{i}$, the facet $\operatorname{conv}\left(H \cup v_{k-1}\right)$ of $P^{d, k-1}$ gets replaced with the facet $\operatorname{conv}\left(H \cup v_{k}\right)$.
2. For each $H \in \mathcal{H}_{k}$, the facet $\operatorname{conv}\left(H \cup v_{k-1}\right)$ of $P^{d, k-1}$ gets replaced with the facet $\operatorname{conv}\left(H \cup\left\{v_{k-1}, v_{k}\right\}\right)$ whose boundary complex is $\partial\left(\overline{V\left(H^{+}\right) \cup v_{k-1}}\right) * \partial\left(\overline{V\left(H^{-}\right) \cup v_{k}}\right)$. There are $\binom{d-1}{k}$ such facets.
3. The rest of the facets of $P^{d, k-1}$ remain unchanged.

In particular, it follows by induction that CP is a facet of $P^{d, k}$ and that it is adjacent to all other facets of $P^{d, k}$, and, furthermore, that the collection of facets in item 3 consists of $\Sigma \backslash u_{d}^{\prime}, \mathrm{CP}$, and for each $1 \leq i \leq k-1$ and $H \in \mathcal{H}_{i}$, a facet that contains $H \cup v_{i}$.

The proof is based on:
Claim 1: For every $H \in \mathcal{H}_{k}, v_{k} \in \operatorname{aff}\left(H \cup v_{k-1}\right)$. This is because a_{k} lies on the hyperplane $\operatorname{aff}(H)$, and $v_{k} \in\left[a_{k}, v_{k-1}\right]$.

Claim 2: For $i>k$ and $H \in \mathcal{H}_{i}, v_{k}$ is beyond $\operatorname{conv}\left(H \cup v_{k-1}\right)$. Indeed, by Corollary 6.6, in $\operatorname{aff}(\mathrm{CP}), a_{k}$ is beyond H. Hence in $\operatorname{aff}\left(\mathrm{CP} \cup v_{k-1}\right)=\mathbb{R}^{d}$, the point $v_{k} \in \operatorname{int}\left[a_{k}, v_{k-1}\right]$ is beyond $\operatorname{conv}\left(H \cup v_{k-1}\right)$.

Claim 3: v_{k} is beneath the rest of the facets of $P^{d, k-1}$. First, as easily seen from the definition of sequences $\left\{a_{j}\right\}$ and $\left\{v_{j}\right\}, v_{k}$ is beneath both $\Sigma \backslash u_{d}^{\prime}$ and CP. Thus it only remains to show that if G is a facet of $P^{d, k-1}$ that contains $H \cup v_{i}$ for some $i<k$ and $H \in \mathcal{H}_{i}$, then v_{k} is beneath G. This follows from Corollary 6.6 along with another simple induction on j, where $i+1 \leq j \leq k$. For the base case, by Corollary 6.6 , in aff(CP), a_{i+1} is beneath H. Hence, in $\operatorname{aff}\left(\mathrm{CP} \cup v_{i}\right)=\mathbb{R}^{d}, a_{i+1}$ is beneath G. Since v_{i+1} is in the interior of $\left[v_{i}, a_{i+1}\right], v_{i+1}$ is also beneath G. The inductive step is very similar: by the inductive hypothesis, v_{j} is beneath G and by Corollary 6.6 , so is a_{j+1}; hence $v_{j+1} \in\left[v_{j}, a_{j+1}\right]$ is also beneath G. The claim follows.

The above three claims uniquely determine the facets of $P^{d, k}$. Claim 3 implies that the facets of $P^{d, k-1}$ from item 3 in the list are unaffected by adding v_{k}, and hence remain facets of $P^{d, k}$.

Claim 1 implies that for every $H \in \mathcal{H}_{k}$, the facet $\operatorname{conv}\left(H \cup v_{k-1}\right)$ of $P^{d, k-1}$ is replaced by a new facet $\operatorname{conv}\left(H \cup\left\{v_{k}, v_{k-1}\right\}\right)$. Note that the barycenter $b_{H^{+}}$of H^{+}lies on the line segment connecting a_{k} and the barycenter $b_{H^{-}}$of H^{-}(see the proof of Lemma 6.5). Hence, if v_{k} is an interior point of the line segment $\left[a_{k}, v_{k-1}\right]$, then $\left[b_{H^{+}}, v_{k-1}\right]$ and $\left[b_{H^{-}}, v_{k}\right]$ intersect at a point p. This implies that $\operatorname{conv}\left(H^{+} \cup v_{k-1}\right) \cap \operatorname{conv}\left(H^{-} \cup v_{k}\right)=p$. Thus the boundary complex of $\operatorname{conv}\left(H \cup\left\{v_{k}, v_{k-1}\right\}\right)$ must be $\partial\left(\overline{V\left(H^{+}\right) \cup v_{k-1}}\right) * \partial\left(\overline{V\left(H^{-}\right) \cup v_{k}}\right)$. These facets are exactly ${ }^{2}$ the facets of $P^{d, k}$ containing $v_{k-1} v_{k}$.

Finally, the rest of the facets of $P^{d, k}$ are those arising from $H \in \mathcal{H}_{i}$ for $i>k$. By Claim 2 and the previous paragraph, they must be of the form $\operatorname{conv}\left(H \cup v_{k}\right)$, replacing $\operatorname{conv}\left(H \cup v_{k-1}\right)$ of $P^{d, k-1}$.

We thus obtain the following result (for convenience we let $v_{d-1}=v_{d-2}$):
Lemma 6.10. The polytope P^{d} in Definition 6.9 has $3(d-1)$ vertices and $2^{d-1}+1$ facets. The vertex set of P^{d} is

$$
\left\{u_{1}, \ldots, u_{d-1}, u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}, u_{d}^{\prime}=v_{1}, u_{d+1}^{\prime}=v_{0}, v_{2}, \ldots, v_{d-3}, v_{d-2}=v_{d-1}\right\} .
$$

The set of facets of P^{d} naturally splits into the following d subfamilies:

1. \mathcal{F}_{0} consists of the simplex $\left[u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}, u_{d+1}^{\prime}\right]$ and the cross-polytope CP.
2. For $1 \leq k \leq d-1, \mathcal{F}_{k}$ consists of $\binom{d-1}{k}$ polytopes of dimension $d-1$ whose boundary complexes are of the form $\partial\left(\overline{V\left(H^{+}\right) \cup v_{k-1}}\right) * \partial\left(\overline{V\left(H^{-}\right) \cup v_{k}}\right)$, where $H \in \mathcal{H}_{k}$. In particular, $\mathcal{F}_{d-1}=\left\{\left[u_{1}, \ldots, u_{d-1}, v_{d-2}\right]\right\}$.
[^2]Theorem 6.11. The d-polytope P^{d} is $(d-2)$-simplicial and 2 -simple. It has two pairs of a simplex facet and a simple vertex not in that facet; they are $\left(\left[u_{1}, \ldots, u_{d-1}, v_{d-2}\right], u_{d+1}^{\prime}\right)$ and $\left(\left[u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}, u_{d+1}^{\prime}\right], v_{d-2}\right)$.

Proof: Let $U=\left\{u_{1}, \ldots, u_{d-1}\right\}$ and let $U^{\prime}=\left\{u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}\right\}$. For $M=\left\{u_{i_{1}}, \ldots, u_{i_{k}}\right\} \subseteq U$, we let $M^{\prime}:=\left\{u_{i_{1}}^{\prime}, \ldots, u_{i_{k}}^{\prime}\right\} \subseteq U^{\prime}$. Also, for brevity, we write u, uv, uvw instead of $\{u\}$, $\{u, v\}$, and $\{u, v, w\}$.

The description of facets in Lemma 6.10 guarantees that P^{d} is $(d-2)$-simplicial. To show that P^{d} is also 2 -simple, it suffices to check that every $(d-3)$-face τ of P^{d} is contained in exactly three facets. By examining families $\mathcal{F}_{i}, 0 \leq i \leq d-1$, of Lemma 6.10 , we see that there are the following possible cases:

1. $u_{d+1}^{\prime} \in V(\tau)$. In this case, $V(\tau) \subset U^{\prime} \cup u_{d}^{\prime} u_{d+1}^{\prime}$. If u_{d}^{\prime} is also in τ, then τ is contained in three bipyramids from \mathcal{F}_{1}; otherwise, τ is contained in two bipyramids from \mathcal{F}_{1} and the simplex $\left[u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}, u_{d+1}^{\prime}\right]$ from \mathcal{F}_{0}.
2. $V(\tau) \subset U^{\prime}$. In this case, τ is contained in the cross-polytope and the simplex from \mathcal{F}_{0}, and one bipyramid from \mathcal{F}_{1}.
3. $V(\tau)=K \cup M^{\prime}$, where $K \sqcup M \sqcup u_{\ell}=U$ and $|K|=i$ for some $1 \leq \ell \leq d-1$ and $1 \leq i \leq d-2$. Then τ is a face of CP from \mathcal{F}_{0}, of $\partial\left(\overline{K \cup u_{\ell} v_{i}}\right) * \partial\left(\overline{M^{\prime} \cup v_{i+1}}\right)$ from \mathcal{F}_{i+1}, and of $\partial\left(\overline{K \cup v_{i-1}}\right) * \partial\left(\overline{M^{\prime} \cup u_{\ell}^{\prime} v_{i}}\right)$ from \mathcal{F}_{i}.
4. $V(\tau)=K \cup M^{\prime} \cup v_{i}$, where $1 \leq i \leq d-2$ and $K \sqcup M \sqcup u_{j} u_{k}=U$ for some $1 \leq j<k \leq d-1$. There are two cases:
(a) $|K|=i-1$. Then τ is a face of $\partial\left(\overline{K \cup u_{j} u_{k} v_{i}}\right) * \partial\left(\overline{M^{\prime} \cup v_{i+1}}\right)$ from \mathcal{F}_{i+1} and of two facets $\partial\left(\overline{K \cup u_{j} v_{i-1}}\right) * \partial\left(\overline{M^{\prime} \cup u_{k}^{\prime} v_{i}}\right), \partial\left(\overline{K \cup u_{k} v_{i-1}}\right) * \partial\left(\overline{M^{\prime} \cup u_{j}^{\prime} v_{i}}\right)$ from \mathcal{F}_{i}.
(b) $|K|=i$ (and so, $i<d-2$). Then τ is a face of $\partial\left(\overline{K \cup v_{i-1}}\right) * \partial\left(\overline{M^{\prime} \cup u_{j}^{\prime} u_{k}^{\prime} v_{i}}\right)$ from \mathcal{F}_{i}. and of two facets $\partial\left(\overline{K \cup u_{j} v_{i}}\right) * \partial\left(\overline{M^{\prime} \cup u_{k}^{\prime} v_{i+1}}\right), \partial\left(\overline{K \cup u_{k} v_{i}}\right) * \partial\left(\overline{M^{\prime} \cup u_{j}^{\prime} v_{i+1}}\right)$ from \mathcal{F}_{i+1}.
5. $V(\tau)=K \cup M^{\prime} \cup v_{i-1} v_{i}$, where $2 \leq i \leq d-2$ and $K \sqcup M \sqcup u_{j} u_{k} u_{\ell}=U$ for some $1 \leq j<k<\ell \leq d-1$. There are two cases:
(a) $|K|=i-2$. Then τ is contained in three facets from \mathcal{F}_{i} :

$$
\begin{aligned}
& \partial\left(\overline{K \cup u_{k} u_{\ell} v_{i-1}}\right) * \partial\left(\overline{M^{\prime} \cup u_{j}^{\prime} v_{i}}\right), \quad \partial\left(\overline{K \cup u_{j} u_{\ell} v_{i-1}}\right) * \partial\left(\overline{M^{\prime} \cup u_{k}^{\prime} v_{i}}\right), \quad \text { and } \\
& \partial\left(\overline{K \cup u_{j} u_{k} v_{i-1}}\right) * \partial\left(\overline{M^{\prime} \cup u_{\ell}^{\prime} v_{i}}\right) .
\end{aligned}
$$

(b) $|K|=i-1$. Then τ is contained in three facets from \mathcal{F}_{i} :

$$
\begin{array}{r}
\partial\left(\overline{K \cup u_{\ell} v_{i-1}}\right) * \partial\left(\overline{M^{\prime} \cup u_{j}^{\prime} u_{k}^{\prime} v_{i}}\right), \quad \partial\left(\overline{K \cup u_{j} v_{i-1}}\right) * \partial\left(\overline{M^{\prime} \cup u_{k}^{\prime} u_{\ell}^{\prime} v_{i}}\right), \text { and } \\
\partial\left(\overline{K \cup u_{k} v_{i-1}}\right) * \partial\left(\overline{M^{\prime} \cup u_{j}^{\prime} u_{\ell}^{\prime} v_{i}}\right) .
\end{array}
$$

The result follows.
Remark 6.12. It is worth noting that the polytope P^{d} is d-dimensional and has $3 d-3$ vertices. This is the smallest number of vertices that a non-simplex $(d-2)$-simplicial 2 -simple d-polytope can have in dimensions $d=3,4,5$ (cf. Proposition 3.3).

As the last theorem of the paper, we show that iteratively merging n copies of P^{d} from Theorem 6.11 results in exponentially many (w.r.t. the number of vertices) combinatorially distinct ($d-2$)-simplicial 2 -simple d-polytopes. Recall from Theorem 6.11 that

- The polytope P^{d} has two simple vertices u_{d+1}^{\prime} and v_{d-2}, and two simplex facets $F^{\prime}:=\left[u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}, u_{d+1}^{\prime}\right]$ and $F:=\left[u_{1}, \ldots, u_{d-1}, v_{d-2}\right] ; u_{d+1}^{\prime}$ is a vertex of F^{\prime} but not of F, and v_{d-2} is a vertex of F but not of F^{\prime}. All other facets containing u_{d+1}^{\prime} and v_{d-2} are bipyramids.
- The CP facet $\left[u_{1}, \ldots, u_{d-1}, u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}\right]$ is adjacent to all other facets of P^{d}.

Let T_{1} and T_{2} be two copies of P^{d} with the copy of CP, F, and F^{\prime} in T_{i} denoted by CP_{i}, F_{i}, and F_{i}^{\prime}, respectively, and the copy of u_{d+1}^{\prime} from T_{2} denoted by w. We merge T_{1} and T_{2} along F_{1} and w. Since CP_{1} is adjacent to F_{1}, and since w is in one simplex facet (namely F_{2}^{\prime}) and $d-1$ bipyramids, exactly as in the 4 -dimensional case, there are two ways to merge leading to two distinct combinatorial types (recall that σ_{d-1} denotes a ($d-1$)-simplex):

- In $T_{1} \triangleright T_{2}$, the facet CP_{1} gets merged with the simplex F_{2}^{\prime}. The merged facet is then again a CP. Since CP_{2} is adjacent to all other facets of T_{2}, including F_{2}^{\prime}, it follows that the polytope $T_{1} \triangleright T_{2}$ has two CP facets and that they are adjacent to each other.
- In $T_{1} \triangleright T_{2}$, the facet CP_{1} gets merged with a bipyramid, resulting in a facet of the form $\mathrm{CP} \# \sigma_{d-1}$. In this case, $T_{1} \triangleright T_{2}$ has two "large" facets: $\mathrm{CP}_{1} \# \sigma_{d-1}$ and CP_{2}, and they are adjacent to each other; every other facet has at most $d+1$ vertices.

With these observations in hand, we are ready to prove the following.
Theorem 6.13. There are $2^{\Omega(N)}=2^{\Omega(k)}$ combinatorially distinct ($d-2$)-simplicial 2 simple d-polytopes with $N=(3 d-3)+k(2 d-4)$ vertices.

Proof: Consider $k+1$ copies of P^{d}, which we denote by T_{1}, \ldots, T_{k+1}, with the corresponding copies of the CP facet denoted by CP_{i}. Each T_{i} has two pairs of a simplex facet and a simple vertex not in that facet, which in this proof we will denote by $\left(F_{i}, w_{i}\right)$ and $\left(F_{i}^{\prime}, w_{i}^{\prime}\right)$. Consider all polytopes resulting from $\left(\cdots\left(\left(T_{1} \triangleright T_{2}\right) \triangleright T_{3}\right) \cdots\right) \triangleright T_{k+1}$ by the following rules:

- In the first step, we merge T_{1} and T_{2} so that the facet CP_{1} is merged with a bipyramid. In step i where $2 \leq i \leq k$, we have two choices of whether we merge CP_{i} with a simplex or with a bipyramid.
- In the i th step, when computing the merge of $\left(\cdots\left(\left(T_{1} \triangleright T_{2}\right) \triangleright T_{3}\right) \cdots\right) \triangleright T_{i}$ with T_{i+1}, we always merge along F_{i} and w_{i+1}.

Denote by R_{k} the polytope obtained in the k th step. In the i th step $(1 \leq i<k), F_{i+1}$ from T_{i+1} remains untouched and can be used for the $(i+1)$ st step. For $1 \leq j \leq k+1$, we refer to the facet of R_{k} resulting from CP_{j} as the j th special facet. By remarks above, for each $2 \leq j \leq k$, the j th special facet is either a CP or a $\mathrm{CP} \# \sigma_{d-1}$; the $(k+1)$ st special facet is always a CP while the first special facet is always a $\mathrm{CP} \# \sigma_{d-1}$. Furthermore, for all $1 \leq i, j \leq k+1$, the i th and j th special facets are adjacent if and only if $|i-j|=1$.

We show that this procedure produces at least 2^{k-1} pairwise non-isomorphic polytopes. First note that the boundary complexes of all non-special facets of R_{k} are either simplices, joins of two simplices, or stackings over these, and so a non-special facet can never be isomorphic to CP or $\mathrm{CP} \# \sigma_{d-1}$. Associate with R_{k} its profile which is given by the following abstract graph: the nodes represent the facets of the form CP and CP \# σ_{d-1}, and two such nodes are connected by an edge if the corresponding facets are adjacent; also, label each node with a 0 or 1 depending on whether it represents a facet that is a CP or a $\mathrm{CP} \# \sigma_{d-1}$. The resulting profile is then a path with $k+1$ nodes labeled by 0 's and 1 's; one of the endpoints is always labeled by 1 (the node representing the 1 st special facet) and the other endpoint is always labeled by 0 (the node representing the $(k+1)$ st special facet).

There are 2^{k-1} such 0/1-paths, and we claim that each of them is a valid profile. Indeed, given such a path, walk along it from the endpoint labeled by 1 to the endpoint labeled by 0 and read the labels of the nodes. The node at distance $i-1$ from the first endpoint corresponds to the special facet coming from T_{i} and the label of that node simply tells us whether at the i th step we should merge CP_{i} with a simplex or with a bipyramid. This claim completes the proof since isomorphic polytopes have the same profile. In other words, two polytopes with distinct profiles have different combinatorial types.

Remark 6.14. When $d=4$, we can further merge R_{k} with a 2 -simplicial 2 -simple 4 polytope with 10,11 , or 16 vertices. Such polytopes can be found in [12, Section 4.1], where they are denoted by $P_{10}, P_{11}, P_{16}=\mathcal{I}^{1}\left(P_{11}\right)$. This allows us to create exponentially many (in N) 2-simplicial 2-simple 4-polytopes with N vertices for all sufficiently large integers N (not just those with $N \equiv 1 \bmod 4$). It follows from Corollary 4.13 that all resulting polytopes are elementary. Hence for $d=4$, the number of combinatorially distinct 2 -simplicial 2 -simple 4 -polytopes that are also elementary grows exponentially with the number of vertices. This strengthens [13, Corollary 4.2].

Acknowledgments

We are grateful to Amzi Jeffs, Josh Hinman, Gil Kalai, and Günter Ziegler for their comments on the preliminary version of this paper, and to Marge Bayer and Eran Nevo for insightful conversations.

References

[1] K. Adiprasito, E. Nevo, and J. A. Samper. A geometric lower bound theorem. Geom. Funct. Anal., 26:359-378, 2016.
[2] M. M. Bayer. The extended f-vectors of 4-polytopes. J. Combin. Theory, Ser. A, 44:141-151, 1987.
[3] L. J. Billera and C. W. Lee. A proof of the sufficiency of McMullen's conditions for f-vectors of simplicial convex polytopes. J. Combin. Theory, Ser. A, 31:237-255, 1981.
[4] T. Bisztriczky. On a class of generalized simplices. Mathematika, 43(2):274-285 (1997), 1996.
[5] P. Brinkmann and G. M. Ziegler. Small f-vectors of 3-spheres and of 4-polytopes. Math. Comp., 87:2955-2975, 2018.
[6] H.S.M. Coxeter. Regular Polytopes. Macmillan, New York, second edition, 1963.
[7] D. Eppstein, G. Kuperberg, and G. M. Ziegler. Fat 4-polytopes and fatter 3-spheres. In Discrete geometry: In honor of W. Kuperberg's 60th birthday, volume 253 of Pure and Applied Mathematics, a series of monographs and textbooks, pages 239-265. Marcel Dekker, New York, 2003.
[8] B. Grünbaum. Convex polytopes, volume 221 of Graduate Texts in Mathematics. SpringerVerlag, New York, second edition, 2003. Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler.
[9] G. Kalai. Rigidity and the lower bound theorem. I. Invent. Math., 88:125-151, 1987.
[10] G. Kalai. Polytope skeletons and paths. Advanced Studies in Pure Mathematics. CRC Press Ser. Discrete Math. Appl., CRC, Boca Raton, FL, 1997.
[11] A. Paffenholz. New polytopes from products. J. Combin. Theory Ser. A, 113(7):1396-1418, 2006.
[12] A. Paffenholz and A. Werner. Constructions for 4-polytopes and the cone of flag vectors. In Algebraic and geometric combinatorics, volume 423 of Contemp. Math., pages 283-303. Amer. Math. Soc., Providence, RI, 2006.
[13] A. Paffenholz and G. M. Ziegler. The E_{t}-construction for lattices, spheres and polytopes. Discrete Comp. Geom., 32:601-621, 2004.
[14] J. Richter-Gebert. Realization spaces of polytopes, volume 1643 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996.
[15] R. P. Stanley. The number of faces of a simplicial convex polytope. Adv. Math., 35:236-238, 1980.
[16] R. P. Stanley. Generalized h-vectors, intersection cohomology of toric varieties, and related results. In Commutative algebra and combinatorics, volume 11 of Adv. Stud. Pure Math., pages 187-213. North-Holland, Amsterdam, 1987.
[17] G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics. SpringerVerlag, New York, 1995.
[18] G. M. Ziegler. Face numbers of 4-polytopes and 3-spheres. In L. Tatsien, editor, Proceedings of the International Congress of Mathematicians (ICM 2002, Beijing), volume III, pages 625-634. Beijing, China, Higher Education Press, 2002.
[19] G. M. Ziegler. Projected products of polygons. Electron. Res. Announc. Amer. Math. Soc., 10:122-134, 2004.

[^0]: ${ }^{*}$ Research of IN is partially supported by NSF grant DMS-1953815 and by Robert R. \& Elaine F. Phelps Professorship in Mathematics.

[^1]: ${ }^{1}$ The connected sum of two simplicial polytopes P and Q is defined by gluing them along a common facet whose hyperplane separates P and Q. To guarantee that the result is a polytope we first apply an appropriate projective transformation to P (or Q); see [14, Lemma 3.2.4].

[^2]: ${ }^{2}$ To see this, we invite the reader to compute the link of $v_{k-1} v_{k}$ in the polytopal complex generated by these facets and check that it is a $(d-3)$-dimensional pseudomanifold (i.e., every ridge is in two facets). Thus it must coincide with the link of $v_{k-1} v_{k}$ in the boundary of $P^{d, k}$.

