DETERMINANTS OF HODGE-RIEMANN FORMS

MATT LARSON, ISABELLA NOVIK AND ALAN STAPLEDON

ABSTRACT. We calculate the determinant of the bilinear form in middle degree of the generic artinian
reduction of the Stanley—Reisner ring of an odd-dimensional simplicial sphere. This proves the odd mul-
tiplicity conjecture of Papadakis and Petrotou and implies that this determinant is a complete invariant
of the simplicial sphere. We extend this result to odd-dimensional connected oriented simplicial homology
manifolds. In characteristic 2, we prove a generalization to the Hodge—Riemann forms of any connected
simplicial homology manifold. To prove the latter theorem, we establish the strong Lefschetz property for
certain quotients of the Stanley—Reisner rings of connected simplicial pseudomanifolds.

1. INTRODUCTION

This paper provides several far-reaching generalizations of the algebraic g-conjecture for oriented simplicial
pseudomanifolds. Its proof was announced in [APP21], see also [Adil8] [KX23| [PP20]. Our starting point is
the odd-multiplicity conjecture of Papadakis and Petrotou [PP23 Conjecture 5.4]. Below, after setting up
the notation, we summarize our main results.

Let A be a simplicial complex with vertex set V' = {1,...,n} of dimension d — 1 > 0. Let k be a field,
and set K = k(a;j)1<i<d, 1<j<n to be a pure transcendental field extension of k. We assume that A is a
connected homology manifold over k, i.e., A is connected, and the link of every nonempty face G of A has
the same homology as a sphere of dimension d — |G| — 1 over k. Let K[A] be the Stanley—Reisner ring of A,
and set 0; = a; 121 + -+ a; nxn € K[A] fori e {1,...,d}, so 61, ...,0, is a linear system of parameters for
K[A]. Let H(A) = K[A]/(61,...,604) be the generic artinian reduction of K[A].

Assume that A is oriented. Then there is a distinguished isomorphism deg: H%(A) — K [Bri97], see
Section Let H(A) be the Gorenstein quotient of H(A), i.e., the quotient by the ideal (y € H(A) :
(yz)q = 0 for all z € H(A)), where y; denotes the degree d component of y in H(A). If A is a homology
sphere over k, i.e., a homology manifold with the same homology over k as a sphere of dimension d — 1,
then H(A) = H(A). By construction, H(A) is an artinian Gorenstein ring: for each ¢, the bilinear form
H(A) x Fd_q(A) — K given by (y, z) — deg(yz) is nondegenerate.

Suppose that d is even. Let Dg/o € K*/(K*)? be the determinant of the nondegenerate bilinear form on

Fd/Z(A). That is, choose a basis y1, ..., y, for Fd/Q(A), and let M be the symmetric matrix whose (i, j)th
entry is deg(y;y;). Then Dy/o is the image of det M in K*/(K*)?; choosing a different basis for "? (A)
only changes det M by a square, so Dy is well-defined. For a subset F' = {j; < --- < ja} of V of size d, set

[F] to be the determinant of the d x d matrix whose (¢, m)th entry is a; j,, .

Theorem 1.1. Let d be even, and let A be a connected oriented simplicial k-homology manifold of dimension
d—1. Then
Dup=x J[ [FleK*/(K*)?
F facet of A
for some X € kX /(k*)2.

Papadakis and Petrotou proved Theorem for 1-dimensional simplicial spheres [PP23| Proposition 5.1].

Let F be a subset of V of size d. As [F] is an irreducible polynomial (see Lemma [4.2), it defines a

valuation ordpy: K* — Z given by the order of vanishing along the hypersurface defined by [F]. This
1



2 MATT LARSON, ISABELLA NOVIK AND ALAN STAPLEDON

descends to a homomorphism ordpy: K*/(K*)? — Z/2Z. We immediately deduce the following corollary

to Theorem It implies that the determinant of the bilinear form on "? (A) is a complete invariant of
the connected oriented simplicial k-homology manifold A.

Corollary 1.2. Let d be even, and let A be a connected oriented simplicial k-homology manifold of dimension
d — 1 with vertex set V. Let F be a subset of V of size d. Then

1 4f F is a facet of A

0 otherwise.

ord(py(Day2) = {

When A is a simplicial sphere, Corollary was conjectured by Papadakis and Petrotou [PP23, Conjec-
ture 5.4], who called it the odd multiplicity conjecture. This conjecture has motivated our work.

We prove a generalization of the odd multiplicity conjecture. Assume that chark = 2, or chark = 0
and the integral homology of the link of any face (including the empty face) of A has no 2-torsion. Let
=37 1z € Hl(A). For 0 < ¢ < d/2, define the Hodge Riemann form H’(A) x H'(A) — K via
(y,2) + deg(f4=29yz). When d is even and ¢ = d/2, the Hodge Riemann form is the bilinear form on
Fd/Q(A) considered above. Let D, be the determinant of the Hodge-Riemann form on H'(A).

Theorem 1.3. Let A be a connected oriented simplicial k-homology manifold of dimension d—1 with vertex
set V., and let 0 < g < d/2. Assume that chark = 2, or chark = 0 and the integral homology of the link of
any face (including the empty face) of A has no 2-torsion. Let F be a subset of V' of size d. Then

1 if F is a facet of A

0 otherwise.

ord[p} (Dq) = {

When d is even and ¢ = d/2, Theorem follows from Corollary The nondegeneracy of the Hodge—

Riemann form, which is part of Theorem |1.3] is equivalent to the map Hq(A) — Hd_q(A) given by mul-
tiplication by £?~27 being an isomorphism. By Lemma this is equivalent to H(A) having the strong
Lefschetz property in degree g, i.e., that there is some y € " (A) such that the map Hq(A) — Fd_q(A)
given by multiplication by y%~27 is an isomorphism.

In particular, Theorem is a generalization of the algebraic g-conjecture for A (that H(A) has the strong
Lefschetz property), and it implies that the Hodge-Riemann form in any degree is a complete invariant of
A. A proof of the algebraic g-conjecture for connected oriented simplicial pseudomanifolds was announced
in [APP21], see also [Adil8, [KX23| [PP20]. We have been heavily inspired by the recent progress on the
algebraic g-conjecture, and, in particular, the key insight that one should study the generic artinian reduction
of K[A] and the corresponding degree map. See also [APP24].

Theorem follows from a strengthening of the algebraic g-conjecture for less generic artinian reduc-
tions of K[A]. Let F be a subset of V of size d which is not a facet of A, and set #f = > jgF 41,55
Then 0 ,0,...,0,4 is still a linear system of parameters for K[A] (see Proposition . Let Hp(A) =
K[A]/(6F,0,,...,04). Then there is a distinguished isomorphism degp: HL(A) — K (see Section . Set
Hpr(A) to be the Gorenstein quotient of Hr(A). For example, if A is a homology sphere over k, then
Hp(A) = Hp(A). We deduce Theorem from the following theorem.

Theorem 1.4. Let A be a connected oriented simplicial k-homology manifold of dimension d — 1, and let
0 < g < d/2. Assume that chark = 2, or chark = 0 and the integral homology of the link of any face
(including the empty face) of A has no 2-torsion. Then for every non-face F of size d, Hp(A) has the
strong Lefschetz property in degree q.
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We use the characteristic 2 method of Papadakis and Petrotou [PP20], as refined by Karu and Xiao
[KX23]. In the case of H(A), this method was used to show that the Hodge-Riemann form is anisotropic
[KX23, Theorem 4.4]. This can fail in the case of Hp(A) (see Example , but we show that anisotropy
“almost” holds (Proposition and use this to deduce Theorem |1.4

When k has characteristic 0 and A is a polytopal sphere, i.e., is the boundary of a simplicial polytope,
Stanley’s proof of this case of the algebraic g-conjecture [Sta80] can be adapted to give a simple proof of

Theorem see Remark

Recall that a pure simplicial complex A of dimension d—1 is a pseudomanifold if every (d —2)-dimensional
face lies in exactly two facets, and each connected component of the geometric realization of A remains
connected after we remove its (d — 3)-skeleton. Any k-homology manifold is a pseudomanifold, and the
constructions of H(A), H(A), deg, Hr(A), Hr(A), and degp above are valid for pseudomanifolds. For
connected oriented pseudomanifolds, we establish Theorem [I.3] and Theorem [[.4] when ¢ = 0 for all fields k&
(see Theorem and Remark respectively), and, if we further assume that char k = 2, then we establish
Theoremwhen q=1 (see Remark and Theorem in all degrees (see Theorem . We conjecture
that all the results above hold for connected oriented pseudomanifolds over any field & (Conjecture . In
Section 8] we discuss the sole obstruction to using our methods to prove this conjecture when char k& = 2.

Our paper is organized as follows. In Section [2} we recall the construction and properties of the degree
map. In Section [3] we compute some special cases which will be used in the proofs of the main theorems.
In Section [4] we prove the ¢ = 0 case of Theorems and In Sections [5] and [6] we prove Theorem
when char k = 2. In Section[7} we prove the main theorems. In Section[8] we give some examples and discuss
possible extensions.

Throughout, we fix a connected oriented simplicial pseudomanifold A over k of dimension d — 1 with
vertex set V. We will sometimes further assume that A is a k-homology manifold, and we will occasionally
omit the connected, oriented, and simplicial hypotheses. If G is a face of A with vertices {j1,...,J.}, we
write ¢ = xj, - - - x;, for the corresponding monomial in K[A]. We will sometimes abuse notation and use
r¢ to denote its image in H(A) or H(A). See [Stad6] for any undefined terminology.

We will assume throughout that d > 1. If d = 1, the (not connected) case of a simplicial sphere of
dimension 0, i.e., A consists of two points, is discussed in Example 3.3

Acknowledgements. We thank Ed Swartz for suggesting Example and we thank the referees for their
helpful comments. The work of the second author is partially supported by NSF grant DMS-2246399. The
first and third author thank the Institute for Advanced Study, where part of this work was conducted, for a
pleasant environment.

2. DEGREE MAPS

We now discuss degree maps on artinian reductions of Stanley—Reisner rings of connected oriented sim-
plicial pseudomanifolds over k. Throughout the paper, we will compare degree maps associated to different
artinian reductions. The normalization of the degree map will be crucial in what follows, as the results
of the introduction can fail if we use an arbitrary isomorphism from H?%(A) to K. BExplicitly, two such
isomorphisms vary by multiplication by a nonzero element w € K, and if p = dimﬁq(A) is odd, then the
determinant of a nondegenerate bilinear form on H(A) will vary by multiplication by w? = w € K* /(K *)2.

We first discuss orientations over k in the case when the characteristic of k is not 2. If d > 1, then
an orientation on a (d — 1)-dimensional simplex is a choice of ordering of the vertices, up to changing the
ordering by an even permutation. If d = 1, then an orientation on a (d — 1)-dimensional simplex is a choice
of € € {1,—1}. An orientation on a (d—1)-dimensional simplex induces an orientation on each facet. If d > 2
and the simplex is ordered by {vy < -+ < vg}, then we orient {vs,...,v4} using the ordering vy < -+ < vy,
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and we orient the facet which omits v; by changing the ordering by even permutations so that v; is first. If
d = 2 and the simplex is {v; < va}, then we orient {v1} by —1 and orient {vs} by 1.

An orientation of A over k is a choice of orientation for each facet of A such that the two orientations on
any (d — 2)-dimensional simplex of A induced by the two facets containing it are opposite. In what follows,
we fix a choice of orientation.

If k£ has characteristic 2, then we say that any pseudomanifold is oriented over k by definition.

For each facet F = {j1 < -+ < jq}, the orientation on A defines a sign ep € {1,—1}, which is 1 if
the permutation which takes (ji,...,Jjq) to the ordering given by the orientation is even, and is —1 if this
permutation is odd. If the characteristic of k is 2, then ez = 1 by definition.

There is an explicit isomorphism deg: H%(A) — K, called the degree map. This isomorphism was con-
structed by Brion [Bri97], see also [KX23| Lemma 2.2]. Recall that, for a subset F' = {j; < -+ < jq} of V
of size d, [F] is the determinant of the matrix whose (i, m)th entry is a; ;..

Proposition 2.1. There is an isomorphism deg: H*(A) — K of K-vector spaces such that, for any facet
F of A, we have
€

(1) deg(zr) = ﬁ.

In particular, if k£ does not have characteristic 2, then the degree map associated to the opposite orientation
is the negative of the original degree map.

More generally, consider d elements p = (1, ..., pua) in K[A] of degree 1, with pu; = >,y pi,ja; for some
wi; € K. Let k[a; ;] denote the polynomial ring k[a; ;j]1<i<d, 1<j<n With fraction field K, and consider the
k-algebra homomorphism ev,,: k[a; ;] = K defined by

evu(aiz) = pi-
We will use the following criterion for the elements of u to be a linear system of parameters (l.s.0.p.).

Proposition 2.2. [Sta96, Lemma I11.2.4] Consider d elements = (u1, ..., pq) in K[A] of degree 1. Then
Wiy ...y a3 an Ls.o.p. if and only if ev,([F]) # 0 for each facet F' of A.

Suppose that ju = (p1,. .., p1q) is an Ls.o.p. Let H,(A) := K[A]/(p1, . .., pra). We still have dim H(A) = 1
(see, for example, [TW00, Corollary 3.2]), and so the degree map described in Proposition “specializes”
to an isomorphism deg,, : H/f‘f(A) — K of K-vector spaces such that, for a fixed choice of facet I’ of A,

€F

(2) deg, (zr) = m-

We will verify below that is independent of the choice of facet F'. We also have a well-defined Gorenstein
quotient H ,(A), i.e., the quotient of H,(A) by the ideal (y € H,(A) : (yz)q = 0 for all z € H,(A)), where
ya denotes the degree d component of y in H,(A). For example, as in the statement of Theorem let F'
be a subset of V of size d which is not a facet of A, and set 67 = > jgr a1,7;. Then Op = (0F 0s,...,00)
is an Ls.o.p., and we write Hp(A) == Hy, (A), Hp(A) = Hy, (A), and degp = degy,..

We now describe two known techniques that can be used to compute the degree map. We first recall the

following application of Cramer’s rule, see, e.g., [PP23| Proposition 2.1]. Below, sgn(n) € {1} denotes the
sign of a permutation .

Lemma 2.3. Let p = (p1,...,1q) be an l.s.o.p. Let F = {j1 < -+ < ja} be a subset of V of size d. Fiz
1<m<d. Then

3) evu([Fl)zz, = = Y sgn(me) ev,u([F U {v} N {m}])aw € Hy(A),
veEVNF
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where 7, € Sy is the permutation such that the elements of 7, (J1, - -, Jm—1,V; Jm+1s - - -, Jd) are in increasing
order.

Suppose that F' and F’ are facets of A. Since A is a connected pseudomanifold, there is a sequence
of facets F' = Fy, Fy,...,Fs = F', where F; and Fj;; meet along a common face of dimension d — 2 for
1 < j < s. Suppose that F = {j; < --- < jq} and F’ meet along the common face F \ {j,,}. Since F' and
F' are the only facets containing F' ~\ {j, }, multiplying by xr/x;, and tracing through the signs yields

that epr ev, ([F'))zp = epev,([F])ap € HE(A). We conclude that (2) holds for any facet F' of A.

Given a nonzero monomial x?il a:?J € K[A] with each b; > 0, define its support to be the face
{j1,...,Js} of A. Suppose that the above monomial is not squarefree, i.e., b;, > 1 for some 1 <m < s. Let

F be a facet containing the support {j1,...,Js}. Then Lemma implies that

. , 1 T xl?jl .. b
(1) el e S sgn(m) evu((FU o}~ () e (),

) 7e evl“([F]) yEVZ\F ’ g " xjm g
for some permutations 7, as defined in Lemma Importantly, all nonzero monomials on the right-hand
side of have support strictly containing the support of acjfl e x?is. Hence we may compute the degree
of any monomial by using to repeatedly increase the size of the support.

Throughout the paper, we will repeatedly use the following lemma to compare different artinian reduc-

tions. Let R C K be the localization of k[a; ;] at the irreducible polynomials {[F] : F' facet of A}. By
Proposition ev, extends to a k-algebra homomorphism ev,: R — K.

Lemma 2.4. Let yu = (u1,...,u4q) be an Ls.o.p. Let g € klx1,...,x,]a be a polynomial of degree d. Then
deg(g) € R and deg,,(g) = ev,(deg(g)).

Proof. 1t is enough to consider the case when ¢ is a monomial. If g is squarefree, then the result follows
from and . If g is not squarefree, then the result follows by using to repeatedly increase the size
of the support. O

We will apply Lemma [2.4] in Sections [3] [ and [7] in combination with the following simple observation.
We will often use the remark below with P = [F] for some non-face F' of size d.

Remark 2.5. Consider an element f € R. Let P € k[a; ;] be an irreducible polynomial, and suppose that
there is an l.s.o.p. p with ev,(P) = 0, but ev,(f) # 0. We claim that ordp(f) = 0. Indeed, because
ev,(P) =0, P is not a scalar multiple of any {[F] : F' facet of A}, so ordp(f) > 0. But P cannot divide f
to positive order as ev,(f) # 0.

We next recall a formula for the degree map due to Karu and Xiao. It is closely related to the work of Brion
[Bri97] and that of Lee [Leec96]. To state the formula, we define V := {0} UV and K = K(a;:1 <i <d).
For a subset F' = {j; < -+ < jq} of V of size d, let [F]] be the determinant of the d x d matrix whose (i, m)th
entry is a;_ ;

s$Im*
Proposition 2.6. [KX23, Lemma 3.1, Theorem 3.2] Let g € K[z1,...,2,]qa be a polynomial of degree d.
For any facet F = {j1 < -+ < ja} of A, let gr(t1,...,tq) be obtained from g by setting x; to zero for i ¢ F
and setting x;,, =ty for 1 <m <d. Let Xp,, = (—1)"[FU{0} \ {jm}] € K for 1 <m <d. Then

5) deg(g) = ergr(Xra,. .. ,XF,d).

d
F facet of A [F] Hm:l XF)m

In particular, the expression in lies in K. When g € k[zq,...,x,], this formula specializes to a
formula for all Ls.o.p.’s. Explicitly, suppose that g = (u1,...,1q) is an Ls.o.p. Recall that we have an
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evaluation map ev,: k[a; ;] = K defined by ev,(a; ;) = p;; for 1 <i < dand 1 < j < n. This naturally
extends to a k-algebra homomorphism év,,: k[a; jl1<i<d,0<j<n — K such that &v(aio) = aio for 1 <i <d.
For the statement below, observe that if FF = {j; < --- < jgq} is a facet of A and 1 < m < d, then
eV, ([F U {0} \ {jm}]) is nonzero since it specializes (up to a sign) to ev,([F]) by setting a;o to u, ;, for
1 <i < d, and by Proposition 2.2] ev,([F]) # 0.

Corollary 2.7. Suppose that p = (1, ..., pq) is an l.s.o.p. Let g € k[z1,...,x,]a be a polynomial of degree
d. For any facet F = {j1 < -+ < ja} of A, let gp(t1,...,tq) be obtained from g by selting x; to zero for
i ¢ F and setting xj,, =t for 1 <m <d. Let Xp m = (—1)"ev,([FU{0} \ {jm}]) € K for1 <m <d.
Then

ngF(XF,p,ly . 7XF,u,d)
= .
F facet of A eV#([F]) Hm:l XF,u,m
Proof. Recall that R C K is the localization of k[al ;] at the irreducible polynomials {[F' } F is a facet of A},

and ev, maps R to K which is contained in K. With the notation of Proposition let R C K be the
localization of kla; jl1<i<d,0<j<n at the irreducible polynomials {Xp ,, : F facet of A O < m < d}, where

deg,(g) =

Xp, = [F]. Then €V, extends to a k-algebra homomorphism €v,: R — K such that ev, is the restriction
of év, to R C R. By Lemma both sides of lie in R and év,(deg(g)) = deg,(g). The result now
follows by applying év,, to both sides of . O

We next show that the degree can be computed “locally” on A, in an appropriate sense. This will be
used in Section [7] to reduce to the special cases computed in Section The closed star Stara(G) of a
face G of A is the simplicial complex consisting of all faces G’ of A that contain G, together with their
subfaces. Let G = {j1,...,Js} be a face of A, and let S be the set of vertices in Stara(G). Let Kg be
the subfield of K generated over k by a;;, where 1 < ¢ < d and j € S. Let A’ be another connected
oriented simplicial pseudomanifold over k of dimension d — 1, with vertex set V’ and a face G' = {j1,...,J.}.
Let K" = k(aj ;)1<i<d,jev’ be the field of coefficients for H(A'). Suppose that there is an isomorphism of
simplicial complexes 7: Stara(G) — Stara/(G’) that maps j,, to j,, for 1 < m < s. Then 7 allows us to
identify K g with a subfield of K. Let degs: HY(A) — K and degn,: HY(A') — K’ denote the degree maps
for A and A’ respectively.

Lemma 2.8. With the notation above, let x?i 332 be a monomial of degree d with support G. Then

degA(x;’-i x?) € Kg. Using the identification of Ks with a subfield of K', we have
b bs b bs
dega(zj) - a}°) = edegA,(mji exg),
where € = 1 if the orientations on Stara(G) induced by the orientations on A and A" agree, and e = —1 if
they are opposite.

Proof. The only nonzero terms in the right-hand side of the formula for deg A(x?; x?s) in are those
corresponding to facets in Stara (@), and those terms lie in Kg(a;0)1<i<q and are equal (up to a global sign)

to the corresponding terms in the formula for degn, (:cs} e x?f). O
1 s

For the remainder of the section, we assume that k has characteristic 2. We recall some differential
operator identities that will be used in the proof of Theorem [I.4] For 1 < i < dand 1 < j < n, let
Oa, ;+ K — K be the partial derivative with respect to a; ;. Since k has characteristic 2,

(6) Da, ;A7 =0
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for all A € K. For a sequence I = (i1,...,%,) in V, let 9 = 0,
ordering of I. Let x; = x;, ---x; . If we write 27 = 2% ... 2P for some nonnegative integers b;, then we

define /1 to be x?l/z . ~3:Z”/2 if each b; is even, and otherwise we define /7 to be 0. The following result
of Karu and Xiao was conjectured in [PP20, Conjecture 14.1].

“++0a,,, ; note that this depends on the

1,1

Proposition 2.9. [KX23| Theorem 4.1] Let A be a pseudomanifold of dimension d — 1, and assume that
chark = 2. Let I and J be sequences of elements of V of size d. Then

Or deg(z5) = deg(y/z12 )2
Recall that for a non-face F' of A of size d, 7 = 2 jer ,j%5, OF = (0F 0,,...,04), Hp(A) = Hy,. (D),
and degp = degy,.. We have the following corollary.

Corollary 2.10. Let A be a pseudomanifold of dimension d — 1, and assume that chark = 2. Let I be
a non-face of A of size d, and let I and J be sequences of elements of V' of size d. Assume that the first
element of I does not lie in F'. Then

1 degp(zs) = degp(Vrrey)>.

Proof. Recall that R C K is the localization of k[a; ;] at {[G] : G facet of A}, and that evy,. is the evaluation
map from R to K associated to §p. By Lemma [2.4] deg(z;) € R and degp(z) = evg, (deg(z,)). Observe
that Oy restricts to a map from R to itself. Since the first element of I does not lie in F',

Oreve,(N\) = evg, (Or\)
for any A € R. Using Proposition [2.9] and Lemma [2.4] we compute
61 degF(xJ) = 61 [SA (deg(xJ)) = eVop ((9] deg(zJ)) = €Vyp (deg(\/xli)z) = degF(\/a:IxJ)z. O

The following analogue of [KX23, Corollary 4.2] will be useful in what follows. Although the proof is
identical to that of [KX23| Corollary 4.2], we recall it for the benefit of the reader.

Corollary 2.11. Let A be a pseudomanifold of dimension d — 1, and assume that chark = 2. Let F be
a non-face of A of size d, let h € K[x1,...,2y]q for some 0 < ¢ < d/2, and let I and J be sequences of
elements of V' of size d and d — 2q respectively. Assume that the first element of I does not lie in F'. Then

or degF(h2xJ) = degF(h«/xIxJ)z.

Proof. Write h = Y ; Apxy, for some sequences L of elements of V of size ¢ and some A; € K. By @, 1
commutes with multiplication by elements of K2. Using Corollary we compute

Ordegp(h?zy) = Z Or(\2 degp(z2zy))
L

= Z N9y degp(x2a )
L

= ZA% degp(xp\/z12s)?

L

= degp(hy/x1z )2 O

For another recent adaptation of [KX23|, Theorem 4.1] to a nongeneric situation, we refer the reader to
[Oba24] Lemma 4.2 and Corollary 4.3].
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3. SOME IMPORTANT SPECIAL CASES

In this section, we analyze several important special cases. In order to prove the main theorems, we will
need a detailed understanding of the suspension of the boundary of the (d — 1)-dimensional simplex, i.e., the
complex ¥ with vertex set V = {1,...,d + 2} and minimal non-faces {1,...,d} and {d+1,d + 2}. For this,
it will be helpful to study the boundary of the d-dimensional simplex, i.e., the complex S?~! with vertex
set {1,...,d + 1} and unique minimal non-face {1,...,d + 1}. We continue to assume that d > 1 unless
otherwise stated. Let k be any field.

Recall that the polynomials {[G] : G C V, |G| = d} in k[a; ;] are irreducible (see, for example, Lemma[4.2)).
We will need the following lemma to analyze these special cases.

Lemma 3.1. If A can be written as a k-linear combination of {|G] : G C V, |G| = d} where at least two
coefficients are nonzero, then ordig)(A) =0 for all G C V' of size d.

Proof. The k-algebra generated by the irreducible polynomials {[G] : G C V, |G| = d} in k[a; ;] is isomorphic
to the Pliicker ring, i.e., the homogeneous coordinate ring of the Grassmannian of d-planes in k™. In
particular, since the Pliicker relations all have degree strictly greater than 1, the polynomials {[G] : G C

V, |G| = d} are linearly independent over k. Each [G] is homogeneous of degree d. Hence A is also
homogeneous of degree d. If ord;g(A) > 0, then, by comparing degrees, A = A[G'] for some A € k,
contradicting the assumption that at least two coefficients are nonzero. O

We can now analyze the boundary of the d-dimensional simplex, for d > 1.

Example 3.2. Let S?! be the boundary of the d-dimensional simplex with vertex set {1,...,d + 1}. By
Lemma 23] for 1 <m,p < d+ 1, we have

(7) [V~ {pHam = (-1)P[V N {m}z, € H' (ST
Fix 0 < ¢ < d/2. A basis for H1(S9") = H'(S9!) is 2. Using (7)), we compute

d
(H ()" VN {m}]> deg(z{) = [V~ {1197 deg(z1 - za),

m=2
and hence, for some € € {£1}, we have
dog(af) = =y > 7 _
IV~ {m)]
Using 7 we compute
[V {11472 deg(e?20077) = A2 deg(af),
where A == "% (=1)™=1[V \ {m}]. Putting this together gives
deg(fdfquzq) _ eAd72q[V N {1}]2q
1= .
[TV~ {m}]

Let Dy be the image of deg(¢4=24229) in K* /(K*)2. By Lemma ord(g)(A) = 0 for all facets G of S%71,
o

€Al facet|G]  if d is odd.

We conclude that Theorem [1.3] holds in this case (without any assumptions on k). Observe that Theorem [1.4]
holds vacuously since S?~! has no non-faces of size d.

D - {e [e facet [G] if d is even
. =
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We will also need to analyze the case of S°, i.e., the disjoint union of two vertices. Although S° is
not connected, H(S®) is a Gorenstein ring with a well-defined degree map, and we verify directly that the
conclusion of Theorem holds in this case (without any assumptions on k).

Example 3.3. Let d = 1, V = {1,2}, and consider the complex S° with vertex set {1,2} and minimal
non-face {1,2}. We orient S° by assigning —1 to the facet {1} and assigning 1 to the facet {2}. We have
1 1 ap—ap
ai 1,2 ai1ai,2 .

) )

We now analyze 3, the suspension of the boundary of the (d — 1)-dimensional simplex, i.e., the complex
with V' ={1,...,d+2} and minimal non-faces {1,...,d} and {d+1,d+2}; in particular, £ = x1 +- - -+ x442.
The proofs of Theorem and Theorem [1.3] will depend on this special case, via a use of Lemma [2.§

Lemma 3.4. Let F = {1,...,d}. There are polynomials Agqi1, Aay2 € kla; ;] such that ordig(Aay1) =
ordig)(Aay2) = 0 for any subset G of V' of size d, and

[Fll = Agp12441 + Adroare € HY(D).
Moreover, there is € € {1} such that, for 0 < j <d,
- AlIF) 1 - —eAT IRt
(8) deg(ﬁd_%‘éﬂ) = —3 AgilF] and deg(ﬁd_foHz) = — AolF] .
[Tt [FU{d+ 1}~ {m}] [T [FU{d+ 2} \ {m}]
Proof. By Lemma [2.3] for 1 <m < d, we have
(9) [Flzy, = (—1)™ " ((FUu{d+ 1} ~ {m}|zas1 + [FU{d + 2} ~ {m}|zqy2) € HY(D).

For v € {d+1,d+ 2}, by multiplying z,, with the product of @ over all 1 < m < d and by using the relation
Zg+12Z4+2 = 0 in K[X], we deduce that there is € € {£1} such that

(H [FU{v}~ {m}]) xd = [F) ey g g,

m=1
By Proposition taking degrees of both sides of this equation yields
F d—1
€ru{v)~{ay deg(zd) = p 7] .

L= [F U {0}~ {m}]

If we set € = €’epugy}{a}, then the j = d case of follows since €pufat1}fd) = —€ru{d+2}~{d}- Applying
(E[) for 1 < m < d yields

(10) [F]t = Agy1zas1 + Agyozars € H'(D),
where for v € {d 4+ 1,d + 2}, we have

Ay = [F]+ (=) Y0 (D)™ F U {o} \ {m}] € Kaig).

m=1

By Lemma ordig(Ag11) = ordjg)(Aay2) = 0 for any subset G of V' of size d. Using and the relation
Tg+1Zd+2 = 0, we compute

[F]*7 deg(¢*7a}) = AY~ deg(x7).
The result now follows from the j = d case of (g). O
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Although it will not be needed in what follows, we observe that Lemma implies Theorem (without
any assumptions on k) for ¥ in the case 0 < ¢ < d/2. Explicitly, {«, , 2, ,} is a basis for HY(X) = " (%),
and implies that the corresponding determinant D, € K* /(K *)? is equal to

— G] if d is even
D =d gd—Qq 2q d Zd—2q 2q — HG facet[
q eg( wd+1) eg( :Cd+2) A1 Adio HG et [G} if dis odd.

The next lemma will be crucial to the proof of Theorem [I.3] when ¢ = 0. Recall that d > 1 and X is the
suspension of the boundary of the (d — 1)-dimensional simplex.

Lemma 3.5. For every non-face G of ¥ of size d, we have ord|g)(deg((?)) = 0.

Proof. By Lemmaand Remark it is enough to show that there is an l.s.o.p. p which has ev,([G]) = 0,
but deg#(ﬁd) = evu(deg(fd)) #0. Set p; = a;121 + -+ a;qzq for 1 <1i < d, and set pg = agar1Tdr1 +
Ad,d+2Td+2. Because X = S92 % S0 we see that H,(X) = H(S%2) ® H(S°). Furthermore, we can write
£ =101+ 0y, where {1 =x1 + -+ x4 and lo = x441 + Tg+2. We have é‘f =0 and E% =0, and we see that

deg,, (¢7) = deg,, (¢{7"02) = degga—2(£{"") deggo (£2).

Since degsd—2(£;l_1) # 0 and deggo(¢2) # 0 by Example and Example respectively, we deduce that
deg, (¢%) # 0. It remains to show that ev,([G]) = 0. Since G is a non-face, either G = {1,...,d} or
G contains {d + 1,d + 2}. In the former case, ev,([G]) is the determinant of a matrix whose dth row is
identically zero. In the latter case, ev,([G]) is the determinant of a matrix whose last two columns are
identically zero except in the dth row and hence are linearly dependent. O

4. THE DEGREE ZERO CASE

In this section we prove the following result that settles the ¢ = 0 case of Theorem This case works
over a field of any characteristic.

Theorem 4.1. Let A be a connected oriented pseudomanifold of dimension d — 1 with vertex set V.. Let F
be a subset of V' of size d. Then
—1 if F is a facet of A

0 otherwise.

ord [ (deg(¢h)) = {

Recall that throughout we are assuming that d > 1. We first prove a lemma which will be used in the
proof of Theorem The case when p = m is very well-known; see, for example, [Bqc64, Theorem 61.1].

Lemma 4.2. For some 1 < p < m, let N be the m x m matriz with N; j; = a;; if i =1 and j < p or if
i>1,and N;; =0 fori=1 and j > p. Then det N is an irreducible polynomial in ka; ;].

Proof. Suppose that det N = fg, where f, g € k[a; ;]. Because det N is linear in a1, we see that a; ; must
occur in exactly one of f and g, say f. Because p > 1, the variables a;; appear in det N for ¢ > 1. Those
variables must also only occur in f, because a;,1a;,1 does not appear in det N. This implies that a; ; must
also occur only in f for each j, because a; 1a;; does not appear in det N. We conclude that g is a unit. [

In particular, Lemma [4.2| implies that the polynomial det N defines a valuation on K. We now begin
proving Theorem We first deal with the case when F is a facet.

Proposition 4.3. Let F' be a facet of A. Then
ord(f(deg(¢%)) = 1.
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Proof. Using Proposition [2.6] and properties of valuations, we have

d
(11) OI‘d[F] (deg(ﬁd)) > . falgéitnof A (dord[p] (XG,l + .4 XG,d) — Ord[F]([GD — Z ord[p} (XG,m)> s

m=1

with equality if the minimum is achieved only once. As X@ m, [G], and [F] are irreducible polynomials of
the same degree which are not scalar multiples of each other (except that [G] = [F] if G = F'), we see that
for G # F, the quantity in the minimum in is nonnegative. Note that ord(p)(Xp1 +---+ Xpq) = 0
by Lemma Therefore the quantity in the minimum in is equal to —1 when G = F, and so the
minimum is —1 and is achieved exactly once. O

Proof of Theorem[{.1l By Proposition it suffices to show that if F' is a subset of V of size d which is
not a facet, then ordpj(deg(¢?)) = 0. By Lemma [2.4] and Remark [2.5] it is enough to show that degp (¢?) =
evy, (deg(¢4)) # 0.

First assume there is a facet F’ of A with |F' N F| <d —2. Let [F'] = evg, ([F']), which is irreducible by

Lemma We use Corollary to compute that ordﬁ(deg #(£%)) is bounded below by

d
(12) . f'&1rcréitnof N <dord[F,](XGﬁF,1 + -+ Xaop.a) — ordgg(eve, ([G]) — Z ord[F,](XG,gF’m)> ,

m=1

with equality if the minimum is achieved only once. If G # F’, then ordm(eveF([G])) = 0, because [F"]

and evy,([G]) are irreducible polynomials of the same degree which are not scalar multiples. Similarly,
ordW(XGﬁF,m) = 0 (this holds even if G = F”). So if G # F’, then the quantity in the minimum in is
nonnegative.

If G = F', then Ofdm(evep([GD) = ordﬁ([F’]) =1. Write F/ = {j1 < --- < jq} and fix 1 <m < d.
Then for 1 < m' < d, the coefficient of the monomial a1, 0azj, - * G j. Gt jomis = Cdyja D XFr g me 18
(=1)™ if m = m/ and is 0 otherwise, and the coefficient of this monomial in [F’] is zero. We deduce that

Xrigpa1+ -+ Xp gp.4 is nonzero with the same degree as [F'] and ordW(XFggF,l +- -+ Xpro.4) =0.
Therefore, the quantity in the minimum in is —1 for G = F’, so we deduce that ordm(degF (t4)) = 1.

In particular, degp(¢¢) # 0.

Suppose that there is no such facet F’. Then we show that A must be the suspension ¥ of the boundary
of a (d — 1)-dimensional simplex, i.e., the case discussed in Section [3| Let v be a vertex of A not in F, so
every facet containing v has d — 1 vertices from F'. Let L be the link of v. Then L is pure of dimension d — 2
and has the property that any face of dimension d — 3 is contained in exactly two faces of dimension d — 2.
Because all facets of L are contained in the boundary of F' and L is pure, L is isomorphic to a subcomplex
of S92, The only subcomplex of S¢~2 which is pure of dimension d — 2 and has the property that any face
of dimension d — 3 is contained in exactly two faces of dimension d — 2 is all of S92,

We see that A is isomorphic to the join of S%~2 with a disjoint union of some vertices {vy,...,v,}. Then
the link of any facet of S%=2 is {vy,...,v,}. Since every (d — 2)-dimensional face of A lies in exactly two
facets, we must have r = 2. Therefore A = 3. The case of ¥ was treated in Lemma[3.5] O

Remark 4.4. The above argument, together with the proof of Lgnma shows that if F' is a non-face of
size d, then degp(¢?) = evy, (deg(¢?)) is nonzero. In particular, H (A) has the strong Lefschetz property
in degree 0 over any field.
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5. ALMOST ANISOTROPY

In this section and the next, we prove Theorem when the characteristic of k is 2. We use the method
introduced by Papadakis and Petrotou [PP20] based on the special behavior of differential operators in
characteristic 2, as refined by Karu and Xiao [KX23]. In the case of H(A), their approach establishes that
the Hodge-Riemann forms are anisotropic. While, in general, anisotropy fails for H z(A) (see Example 5.3)),
the same approach allows us to prove anisotropy “away from a 1-dimensional subspace” (Proposition [5.6])
Furthermore, as we will show in the next section, this weaker property is enough to deduce the strong
Lefschetz property.

Fix a non-face F of A of size d. Recall from the introduction that §f" = > jgr @1,;7; and that Hp(A)

is the Gorenstein quotient of K[A]/(0f,...,04). Let {p = >  x; € ﬁ;(A) For 0 < ¢ < d/2, define

j=1

the Hodge Riemann form Hp(A) x Hp(A) — K via (y,z) — degp (Z;{fzqyz). The nondegeneracy of the
Hodge—Riemann form is equivalent to the map F%(A) — Ffp_q(A) given by multiplication by EdFﬁq being
an isomorphism, and, by Lemma [5.1] below, this is equivalent to the strong Lefschetz property in degree g.

Lemma 5.1. Fiz some 0 < q < d/2. The algebra Hp(A) has the strong Lefschetz property in degree q if and
only if multiplication by E?;Qq is an isomorphism from Hp(A) — ﬁi:q(A), i.e., {r 1s a strong Lefschetz

element.

Proof. If ¢ is a strong Lefschetz element in degree ¢, then clearly H z(A) has the strong Lefschetz property
in degree q. For the converse, we may replace k by its algebraic closure. Then a Zariski open subset of all
Yy E F; (A) are strong Lefschetz elements in degree g. It follows that a Zariski open subset of all coefficients
(A1,...,An) € k™ correspond to elements > \;x; € F;(A) which are strong Lefschetz elements in degree q.
Therefore, we can find a strong Lefschetz element £p x = > A\jx; with each A; € k. Let

Hpa(A) = K[A]/(D] Narjag, > Njas a0 > Njaa;a;),
JEF J J

and let FF) A(A) be the Gorenstein quotient. Because the Aja, ; are algebraically independent, £r y is a

strong Lefschetz element for Hp x(A). Let ®: Hp(A) — Hp y be the graded isomorphism given by sending

aij to Aja; ;. Then we have a commutative square

d—2q

HL(A) £ Ty (A)

[
q Pl —d—g
. R g
HF,)\(A) —— Hp) (A).
As the bottom horizontal arrow is an isomorphism, so is the top horizontal arrow. O

A similar equivalence holds for H(A), i.e., H(A) has the strong Lefschetz property in degree ¢ if and only
if £ is a strong Lefschetz element in degree q.

Say that Hpr(A) has the weak Lefschetz property in degree g if there is an element y € F;(A) such
that multiplication by y induces a map of full rank from H(A) to F?l(A). It is well-known (see, e.g.,
IMZ08, Lemma 2.3 and Remark 2.4]) that an artinian Gorenstein ring which is generated in degree 1 (such
as Hp(A)) has the weak Lefschetz property in all degrees if and only if it has the weak Lefschetz property
in middle degree (i.e., degree |d/2]); furthermore, multiplication by y induces an injection from Hp(A) to
ﬁ;{jl(A) for ¢ < d/2 and a surjection for ¢ > d/2 — 1. The proof of Lemma [5.1| gives the following result.
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Lemma 5.2. For any q, the algebra Hp(A) has the weak Lefschetz property in degree q if and only if

multiplication by (g is a map of full rank from Hw(A) to F%H(A), i.e., {p is a weak Lefschetz element in
degree q.

For the rest of this section, let k be a field of characteristic 2, and fix a non-face F' of A of size d. Recall
that by Lemma Theorem holds in degree ¢ if and only if the Hodge-Riemann form on FQF(A) is
nondegenerate. We will show that when the latter condition holds, the induced quadratic form is “almost”
anisotropic, in the sense that there is at most one nonzero vector up to scaling for which the quadratic form
is zero.

Recall that a quadratic form @ on a vector space V is anisotropic if Q(v) # 0 for all nonzero v in V.
Fix 0 < ¢ < d/2. Karu and Xiao proved the anisotropy of the (quadratic form associated to the) Hodge—
Riemann form on H(A) [KX23, Theorem 4.4], i.e., deg(¢?~2422) # 0 for nonzero z € H' (A). Our goal is to
analogously establish “almost” anisotropy for the Hodge—Riemann form on F%(A). The following example
shows that anisotropy need not hold.

Example 5.3. Let d = 2, and consider ¥ as in Section [3] i.e., ¥ has vertex set {1,2,3,4} and minimal
non-faces {1,2} and {3,4}. Let F = {1,2}, and consider Hr(X) = Hp(X). Then 6F = ay 373 + ay 424,
so the relation x3z4 = 0 in K[X] implies that 23 = 0 in Hp(X). As 3 # 0 in Hp(X), anisotropy fails for
Hp(%).

Let W, C Hp(A) be the span of all monomials whose support is not contained in F. We will mainly be
interested in the case when ¢ = |d/2].

Lemma 5.4. The codimension of W, in HE(A) is at most 1. Consider a linear form g = Yo Ny for
some \; € k such that A, # 0 for some v € F. If g9 lies in W,, then W, = Hp(A).

Proof. Let w be a vertex not in F. We claim that {g} U {z, : v ¢ FU{w}} is a basis of H}(A). Assuming
this claim, monomials of degree ¢ in this basis span ﬁ%(A). Every such monomial except g7 lies in W,
proving that W, has codimension at most 1, and that W, = HE(A) if g7 lies in Wy.

It remains to establish the claim. We need to show that 6, 65, ..., 64 together with {g}U{z, : v ¢ FU{w}}
are linearly independent, and hence form a basis of K[z1,...,z,];. Without loss of generality, assume that
F={1,...,d} and w = d+ 1. Let M denote the (d+ 1) x (d + 1) matrix whose rows record the coefficients
of 0 0,,...,04, g with respect to the vertices {1,...,d + 1}. It is enough to show that det M # 0. Let M’
be the submatrix obtained by removing the first row and last column. Since the only nonzero entry in the
first row of M is the last entry, it suffices to show that det M’ # 0. This follows since all entries of M’ are
generic except the last row, which is nonzero by assumption. O

Let Wi ={z € Hi(A) : degp (0929 2w) = 0 for all w € W,}. If we assume the Hodge Riemann form on

FqF(A) is nondegenerate in degree ¢, then WqL is the orthogonal complement of W, and the dimension of
WqJ- is at most 1 by Lemma

Example 5.5. In Proposition we will show that F};(A) = HL(A). In this case, as 0 gives a linear
relation between {z,, : w ¢ F} in H:(A), W has codimension 1. In Example Wy = Wit = Span(z3) C
HE(A).

We have the following application of Corollary
Proposition 5.6. Let z € Hp(A). If degF(K%_Q{IZQ) =0, then z € W,-.
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Proof. Let J = (j1,...,Jq) be a sequence of elements of V' such that the support of z; is not contained in
F. We may assume that j; ¢ F. If we can show that degF(EdFﬁquz) = 0, then applying this to all such J
implies that z € WqL.

Let L be a sequence of elements of V' of size |d/2]| — ¢, and let v be a vertex of V. Let (J1|---|J;) denote
the concatenation of sequences of vertices Ji, ..., J.. Define

) JJ|LIL) if d is even
 V(J)J|L|L|w) if d is odd.

If d is even, then Corollary implies that
0=0; degF(ﬁif%zz) = degF(ﬁ(Il;/Q_qumLZV.

Since this holds for all L, we deduce that degp (6%72%‘],2) =0.
If d is odd, then Corollary implies that

0 = 0y deg o (¢5 *72%) = Z degF(fgfl)/%qxﬂm/wiwf = degF(fgfl)/meLxUZ)?
i=1

Since this holds for all L and v, we deduce that degp (KdF_Qqa:Jz) =0. O

Corollary 5.7. Assume that either W;- =0, or the Hodge—Riemann form on F%(A) is nondegenerate and
qu ¢ Wy. Then the Hodge—-Riemann form on F%(A) s anisotropic.

Proof. 1f qu = 0, then Proposition implies that this form is anisotropic. Assume that the Hodge—
Riemann form on Hp(A) is nondegenerate and qu ¢ W,. Then dim qu = codim W, = 1 by Lemma
Let W = span(z), and assume that degF(KdF_qug) = 0. Then z € (Wi)* = W,, contradicting our

assumption that WqJ- is not contained in W,. Hence degp(ﬂ‘li;quz) # 0, and the result follows from Propo-
sition 0

Proposition 5.8. Assume that the Hodge—Riemann form on F%(A) is nondegenerate. Let U be a subspace
of Hyp(A) where the restriction of the Hodge-Riemann form on Hp(A) to U is degenerate. Then U C W,.

Proof. If W;- =0, then Corollary implies that the Hodge—-Riemann form in degree ¢ is anisotropic, and so
the restriction to any subspace is anisotropic and therefore nondegenerate. By Lemma we may therefore
assume that W= is one-dimensional, generated by y;. By Corollary we may assume that y; € W,. By
Proposition if y1 ¢ U, then the restriction of the Hodge-Riemann form to U is anisotropic and hence
nondegenerate, a contradiction. Therefore U must contain y;.

Assume that U is not contained in W,. Then the codimension of UNW, in U is 1, and so we may extend

y1 to a basis y1,y2,...,yr of U with y1,...,yr—1 € W,. Since y1 € qu, degF(édF_qulyi) =0forl1 <i<r.

As (qu)L = W, and y, & W, it follows that degF(E%_qulyr) # 0. Let M be the r x r matrix whose
(i,7)th entry is degF(E‘Iiyﬂqyiyj). Let M’ be the (r — 2) x (r — 2) submatrix given by rows {2,...,r — 1} and
columns {2,...,r — 1}. We see that

det(M) = degp (¢4 Ty, y,)? det (M").

As the span of ys,...,y,_1 does not contain qu, Proposition implies that the Hodge-Riemann form
restricted to the span of ys,...,y,._2 is anisotropic, and hence nondegenerate. In particular, det(M’) # 0.
We conclude that det(M) # 0, contradicting that the Hodge-Riemann form is degenerate when restricted
to U. O
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6. STRONG LEFSCHETZ IN CHARACTERISTIC 2

In this section, we complete the proof of the strong Lefschetz property for Hz(A) in characteristic 2.
We use some ideas from [PP20, Section 9.1], which are in turn inspired by ideas of Swartz, e.g., [Swa09l
Proposition 4.24].

Throughout this section, we assume that k has characteristic 2. Let d > 1 be arbitrary. Let S(A)
denote the suspension of A, which has vertex set VU {n +1,n+2} = {1,...,n+ 1,n 4+ 2}. Since A is
a connected pseudomanifold, so is S(A). Let FF = F U {n + 1}; note that F is a non-face of S(A). Let
K = k(aij)i<i<d+1,1<i<nt2- )

We will consider a slightly different 1.s.0.p. for S(A). Set 6 = a;ﬁl’nﬂ > i 01,525 For 1 <i<d, set

n

0; = Qin1%ni1 + Ginr2Tniz + 3 (G0 + Qa4 jGini10g0 ,00)T5,
j=1
and set 0411 = Z;:f ags125. Let Op = (0F 0y, ... ,04,0441). Let FéF(S(A)) be the Gorenstein quotient
of K[S(A)]/0F. Note that the coefficients of 6 are generic except that, when j € F, the coefficient of x; in
0 is 0. In particular, Hy (S(A)) is isomorphic as a graded ring to H 5(S(A)).
We first outline the argument. After extending scalars, we can identify H p(A) with the ideal (Tnt1) in

FéF (S(A)) (see Proposition. When d is odd, we will show that the weak Lefschetz property for H p(A)

is equivalent to the Hodge-Riemann form on Fé{?l)/z(S (A)) being nondegenerate when restricted to the

ideal (z,41). We then apply the results of Section [5| to F@F(S(A)) to deduce the latter result, and hence

deduce the weak Lefschetz property for Hp(A). We can then use the results of Section |5 on Hg(A) to
deduce the strong Lefschetz property. The case when d is even is similar, using that d + 1 is odd, so we
already know the weak Lefschetz property for H; (S(A)).

In the statement of the proposition below, we extend degy to an isomorphism of K-vector spaces from
—d ~ ~
Hp(A)®k K to K.
Proposition 6.1. There is an isomorphism of K—algebms

?: H; (S(A)/ann(zn11) > Hp(A) @k K
given by p(xz;) = x; fori <n, P(xpy1) = Z?:1 ad+1’ja;i1’n+1xj, and B(Tn42) = 0. Let ¢ be the composition
H;, (S(A)) = Hy (S(A))/ ann(z,41) > Hp(A) @k K.
—d

Then degy, (2xn+1) = degp(p(2)) for all z € Hg, (S(A)).

Proof. First observe that there is a map H; (S(A)) = Hp(A) @k K defined by x; — z; for i < n and
ZTpt2 — 0. As 0441 = 0, this implies that x,,41 is sent to a;il)n_ﬂ Z;;l aq+1,;75. We check that the induced
map ¢': Hy (S(A)) - Hp(A) ®x K descends to Hy (S(A))/ ann(zp41). For this, we need to show that if
we have 0 < ¢ <dandy € HgF (S(A)) with degy (2541y2) =0 for all z € Hg;q(S(A)), then ¢'(y) = 0. To
do so, it suffices to prove that

degy (vp1w) = degp(¢'(w)) for all w € HgF (S(A)).

We claim that Hg (S(A)) is spanned by squarefree monomials in zy,...,2,. It is well-known that it is
F

spanned by squarefree monomials in @1, ..., Zn, Zny1, Tnta supported on (d — 1)-dimensional faces of S(A);
this follows by using to repeatedly increase the size of the support. Let G = {i1,...,94-1,%4} be one
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such face with ig € {n +1,n+ 2} and let G’ = (G~ {ig}) U{n+1,n+2} C {1,...,n+2}. Then G’ has
size d + 1, and Lemma allows us to express z;, € H;F (S(A)) as a linear combination of variables in

{zp : p ¢ G'}. Substituting such an expression for z;, in the monomial z¢ shows that z¢ lies in the span of
squarefree monomials in z1, ..., z,, as claimed.

For each squarefree monomial z;, - - z;, in z1,...,7,, degg_ (xj, -+ xj,Tny1) equals
—1 -1 -1
1,51 8411 nt1 T Aja,10G401 nt1 0
det 2,5, T @d4+1,j 02,0410 41 i1 " 024q T Qd+1,54020+10g 11 piq G2,0+1
€ . . )
Ad+1,j5; s Ad+41,54 Ad+1,n+1

where if j, € ' we interpret a; ;, as 0. Using row operations to make the last column 0 except for the
(d+1,d+ 1) entry, we see that this is equal to degp(zj, - - - x;,). We conclude that % is well-defined.
Multiplication by #,.1 induces a degree 1 graded isomorphism Hy (S(A))/ann(zni1) = (zn41) C
Fép (S(A)). Tt follows that FéF(S(A))/ann(an) is an artinian Gorenstein algebra of socle degree d.
Since @ is a surjective graded map between artinian Gorenstein algebras whose socles are in the same degree,
it is an isomorphism. O

Pr0p051t10nthen implies that the ideal (z,41) in H; - (S(A)) can be identified with Hr(A) @k K[-1].
Following the strategy of [PP20], Section 9.1], we apply the results in Section |5 Ito S(A) in order to prove the
weak Lefschetz property for A.

Proposition 6.2. Let F' be a non-face of A of size d. Then Hp(A) has the weak Lefschetz property.

Proof. We can check this after extending scalars to K, see, e.g., [PP20, Proposition 13.3]. We assume the
setup of Proposition and we set ¢(zp4+1) = . Let U, denote the degree ¢ part of the ideal (z,,41)
in F@F (S(A)). Let W, denote the subspace of ng (S(A)) spanned by monomials whose support is not
contained in F'. o

First assume that d is odd. Because H p(A) is generated in degree 1, it suffices to prove that multiplication
by x induces an isomorphism from H(d 1)/Z(A) @K K to Hif”l)/z(A) @k K. This, in turn, is equivalent to

) QK K being nondegenerate. By Proposition
(vyz) = degéF (x¢21+1275)7

the form (y, z) — degp(zyz) on HF (
degp
where § and Z are any lifts of y and z to ﬁép (S(A)). Recall that we can identify EE;H)/Q(A) o K
with U(g41)/2 such that y and z correspond to §x,41 and Zz,41, respectively. Thus, we can identify the
form (y,z) — degp(zyz) on H;j 1)/Q(A) @k K with the form (y/, 2') — degy (y'2") on Uayiy)2, i-e., the
restriction of the Hodge-Riemann form on ngﬂ)/z(S(A)) to Ug41)/2- Our goal is to show that this form

is nondegenerate.
Because H; is artinian Gorenstein and (d + 1)/2 is the middle degree, the Hodge-Riemann form on

Hé?l)/Z(S(A)) is nondegenerate. Assume that its restriction to Uiy1y/2 is degenerate. Then Proposi-
tion implies that Uggy1)2 C Wiayr)/2. As xnfl )2 ¢ U(it1)/2, Lemma implies that Wig41y/2 =
Féiﬂ)/Q(S(A)), so Corollary implies that the Hodge-Riemann form on Féi+1)/2(S(A)) is anisotropic,
contradicting the assumption that the restriction to Uigy1)/2 is degenerate.

Next assume that d is even. The argument is similar to the one above. Let £z be the image of Zl 1 x; in

H; 4, (S(A)). Because Hp(A) is generated in degree 1, it suffices to prove that multiplication by z induces an
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injection from F;i;/%l (A ok K to Fé/z(A) @k K. This follows if we can show that multiplication by z¢(£5)

is injective, or, equivalently, that the form (y,z) — degp(z¢(¢;)yz) on F‘Z;/zil(A) ®k K is nondegenerate.

By Proposition [6.1]

degp(zp(lp)yz) = degy, (x541€592),

where § and Z are any lifts of y and 2z to Hj_(S(A)). Recall that we can identify F?/Qfl(A) o K

with Ug/p such that y and z correspond to gx,41 and Zx, 41 respectively. Thus, we can identify the form
(y,2) = degp(xp(ls)yz) on Hﬁf”l)/Q(A) @k K with the form (y/,2') — degg, (Lzy'2") on Uyja, i.e., the
restriction of the Hodge-Riemann form on F;?(S(A)) to Ugso. Our goal is to show that this form is
nondegenerate.

Since we have established weak Lefschetz for even-dimensional pseudomanifolds, and, in particular, for
S(A), Lemma implies that the Hodge-Riemann form on Fgf (S(A)) is nondegenerate. The rest of the

argument now proceeds just as above. Explicitly, assume that its restriction to U/ is degenerate. Then

Proposition implies that U/, C Wy/o. As xifl € Uqya, Lemma implies that Wy, = F;ﬁQ(S(A)),
and Corollary implies that the Hodge-Riemann form on ﬁgf (S(A)) is anisotropic, contradicting the
assumption that the restriction to Uy, is degenerate. |

We are now ready to prove the strong Lefschetz property for Hr(A) in characteristic 2.

Theorem 6.3. Let A be a connected simplicial pseudomanifoliof dimension d — 1, and let 0 < q¢ < d/2.
Assume that chark = 2. Then for every non-face F of size d, Hp(A) has the strong Lefschetz property in
degree q.

Proof. We want to show that the map ¢4 27: Hp.(A) — ﬁdFiq(A) is an isomorphism. This is equivalent to
showing that the Hodge-Riemann form (y, z) — degF(f‘f{zqyz) is nondegenerate on H%(A).
Let m = |d/2|. By Proposition and Lemma lr is a weak Lefschetz element, and so the Hodge—

Riemann form on H 7;(A) is nondegenerate. Moreover,
CRT Hyp(A) = Hy (A)

Is injective and compatible with the Hodge-Riemann forms. For example, in the case when d is odd, for all
y,z € Hi(A) we have
degp(( *"y2) = degp(Lp(C7 ) (Ep2)).
Let U be the degree m part of the ideal (¢ ) in Hz(A). In order to complete the proof, it suffices to show
that the restriction of the Hodge Riemann form on Hy (A) to U is nondegenerate.
Suppose that the restriction to U is degenerate. Proposition [5.8] implies that U C Wy,, where W, is the
subspace of H % (A) spanned by monomials whose support is not contained in F. Since £ € U, Lemma

implies that W,, = FIIZ(A) Corollary implies that the Hodge-Riemann form on F?(A) is anisotropic,
contradicting the assumption that the restriction to U is degenerate. O

As Example shows, the Hodge-Riemann forms on Hr(A) are not, in general, anisotropic. We note
one case where the proof of Theorem [6.3|can be used to deduce anisotropy. Examples of simplicial complexes
with small non-faces include, for instance, all flag complexes. In this case, all minimal non-faces have size
two.
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Proposition 6.4. Let A be a pseudomanifold, and let k be a field of characteristic 2. Let F' be a non-face of
A of size d, and suppose that F contains a non-face of size at most m = |d/2]. Then, for every 0 < g < m,
the Hodge-Riemann form on Hy(A) is anisotropic.

Proof. To simplify the notation, assume that F' = {1,2,...,d} and that G = {1,2,...,r} is a non-face of A
for some r < m. Let W,,, C Hy(A) be the span of monomials whose support is not contained in F. As in
the proof of Theorem by Lemma [5.4] and Corollary it suffices to show that z7* € W,,.

Using , for each 2 <i < r, we can express z; € H}:(A) as the sum of \;z; and some linear combination
of {z, : d+2 < p <n}. Here, up to asign, \; equals evg, ([{1,...,d+ 1}~ {i}])/eve,. ({2,...,d+1}]), and,

in particular, is nonzero. Now, since {1,2,...,7} is a non-face of A, the product x’{“”lmg ...x, is equal to
zero. Substituting the above expressions for xs,...,z, in this product, implies that Ag--- A,27" is a linear
combination of monomials in {z, : d+ 2 < p < n}, so z* belongs to W,. O

7. PROOFS OF THEOREMS
In this section, we prove Theorem then Theorem and then finally Theorem

Let A be a connected oriented simplicial k-homology manifold of dimension d — 1. We will need the
following result of the second author and Swartz, which uses as input results of Griabe and Schenzel [Gra84,
Sch81]. Let g, = dim ﬁq(A;k), the dimension of the reduced homology of A over k. By the universal
coefficient theorem, this depends only on the characteristic of k. Let (hg(A),...,hq(A)) be the h-vector of
A. Let H,(A) be the Gorenstein quotient of K[A]/(p1,. .., ua) for an Ls.o.p. pp= (p1,. .., uq) for K[A].

Proposition 7.1. [NS09, Theorem 1.3 and 1.4] Let A be a connected oriented simplicial k-homology manifold
of dimension d — 1. Let u = (p1,...,uq) be an l.s.o.p. for K[A]. Then

— he(A) + (D) i (1778, f0<g<d
1 if g =d.
In particular, dim FZ(A) is independent of the choice of 1.s.0.p. This will be used to compare the Hodge—
Riemann forms on H(A) to those on H,(A), for various l.s.0.p.s p.

Proof of Theorem[I.4} When chark = 2, the result follows immediately from Theorem Now suppose
that char k = 0, and that the integral homology of the link of any face (including the empty face) of A has
no 2-torsion.

The assumption that the integral homology of the link of every face has no 2-torsion implies that A is a
homology manifold over Fa, and that dim H,(A; k) = dim H,(A;Fs) for all g. Let H z2(A) be the Gorenstein
quotient of Fa(a; ;)[A]/(0f,...,04). By Proposition dim H},(A) = dim F;Q(A) for each g.

Fix 0 < ¢ <d/2, and let S = {my,...,m,} denote the set of monomials of degree ¢ in K[A]. Let My be
the p x p matrix whose (4, 7)th entry is degp(¢?~29m;m;). Then Hp(A) has strong Lefschetz property in
degree ¢ if and only if the rank of M, is equal to dimF% (A).

Let My be the px p matrix whose (i, j)th entry is degp o (¢4=24m;m;), i.e., the degree in H p2(A). Because
Hp2(A) has the strong Lefschetz property by Theorem the rank of M> is equal to dim F%(A).

By Lemma degp(£1729m;m;) = evy, (deg(£1=29m;m;)) lies in the localization of Z[a; ;] at the polyno-
mials {evy,. ([G]) : G is a facet of A}. Note that degy o(£4~29m;m;) is obtained by reducing degp (¢4~29m;m;)
modulo 2. Hence dim Hp(A) > rank(My) > rank(Ms) = dimﬁ;Q(A). Since dim Hp(A) = dirrquRQ(A)7
the rank of M, is equal to dim H (A), as desired. O
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Remark 7.2. When k has characteristic 0 and A is a polytopal sphere, Theorem can be deduced from
Stanley’s proof of this case of the algebraic g-conjecture [Sta80]. Indeed, we can assume k = Q and choose
a realization of A as the boundary of a convex polytope P in R? whose vertices are rational. Because F'
is a non-face, using an affine transformation, we may assume that the vertices of F' are contained in the
hyperplane where the first coordinate of R? vanishes and that the origin is in the interior of P. Then the
strong Lefschetz property for Hp(A) = Hp(A) follows from the Hard Lefschetz theorem applied to the
projective toric variety corresponding to the fan over P.

We now begin the proof of Theorem Let g = (p1,...,1a) be an Ls.o.p. for K[A]. Let ¢, denote

the image of >, x; in H;(A). Recall that R C K denotes the localization of k[a; ;] at the irreducible
polynomials {[G] : G facet of A}, and ev,: R — K is the map defined by ev,(a; ;) = i ;.

Lemma 7.3. Let A be a connected oriented simplicial k-homology manifold. Let p = (u1,...,u1q) be an

l.s.o.p. and let 0 < g < d/2. Suppose that multiplication by €ﬁ_2q is an isomorphism from FZ(A) —
szq(A), i.e., £, is a strong Lefschetz element in degree q. Let P € kla; ;] be an irreducibleﬁolynomial
such that ev,(P) = 0. Then there are monomials yi,...,y, whose images form a basis of H'(A) and
ordp(det M) = 0, where M is the p X p matriz whose (i,7) entry is deg(¢12%y,y;). In particular, H(A) has
the strong Lefschetz property in degree q, and, if Dy € K*/(K*)? is the determinant of the Hodge-Riemann

form on H'(A), then ordp(Dy) =0 € Z/2Z.

Proof. Choose monomials y1,...,¥y, in the degree ¢ part of K[A] such that their images form a basis for
FZ(A); this is possible because FZ (A) is spanned by the images of monomials.

Let M be the p x p matrix whose (i, j) entry is deg(¢¢~29y;y;). By Lemma each entry of M lies in
R, so det M lies in R. By Remark if we can show that ev,(det M) # 0, then ordp(det M) = 0.

Let M,, be the p x p matrix whose (¢, j) entry is deg#(ﬁﬁ’quiyj). By Lemma the (4, j) entry of M, is
ev,, (deg(£4=20y,y,)), so det M,, = ev,(det M). As ¢, is a strong Lefschetz element for FZ(A), det M, # 0,
and we conclude that ordp(det M) = 0.

Finally, that det M is nonzero implies that the images of y1,...,y, are linearly independent in Fq(A).
As dimH'(A) = dim H},(A) by Proposition {y1,...,yp} is a basis for H'(A), so det M computes the
determinant of the Hodge-Riemann form on H" (A). In particular, since this determinant is nonzero, H(A)
has the strong Lefschetz property in degree q. This completes the proof. |

Proposition 7.4. Let A be a connected oriented simplicial k-homology manifold. Let F' be a subset of V' of
size d which is not a facet, and let 0 < q < d/2. Suppose that Hp(A) has the strong Lefschetz property in
degree q. Then H(A) has the strong Lefschetz property in degree q. Let Dy € K* /(K*)? be the determinant
of the Hodge-Riemann form on H'(A). Then ord[g(Dg) = 0.

Proof. By Lemma p is a strong Lefschetz element for H3(A). The result now follows from Lemma
setting p = 0 and P = [F]. O

Lemma 7.5. Let F be a subset of V' of size d. Then for each q, there is a basis for HQ(A) consisting of the
images of monomials in K[A] whose support is disjoint from F.

—1
Proof. By Lemma one can write any monomial in H (A) in terms of the monomials corresponding to
vertices not in F. As H(A) is generated in degree 1, this implies that each H*(A) is spanned by monomials
whose support is disjoint from F. Some subset of these monomials forms a basis. O
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For a facet F of A, let A’ be the simplicial complex obtained by doing a stellar subdivision in the interior
of F, i.e., the vertex set of A’ is VU {n+ 1} = {1,...,n + 1}, and the facets of A’ are the facets of A
except for F, together with (F U {n + 1}) \ {j} for each j € F. Then A’ is a connected oriented simplicial
k-homology manifold with its orientation determined by orienting the facets of A’ which are also facets of
A in the same way that they are oriented in A.

By Proposition if F' is a non-face of size d and H(A) has the strong Lefschetz property in degree g,
then so does H(A). If A has no non-faces of size d, then A must be isomorphic to S, and so Theorem
holds for A by Example When proving Theorem we may therefore assume that H(A) has the strong
Lefschetz property in degree gq.

Proof of Theorem[I.3 As Theorem implies Theorem when ¢ = 0, we may assume that 0 < g < d/2.
Theorem [1.4] and Proposition [7.4] show that if F' is not a facet, then ordp(Dy) = 0. Suppose that F is

a facet of A. By Lemma we may choose a collection of monomials y,...,y, € K[A] of degree ¢ whose
support is disjoint from F and such that their image in H"(A) is a basis. By the version of Lemma
for H(A), ¢ is a strong Lefschetz element in degree q. Let M be the p x p matrix whose (i, j)th entry is
deg(¢?29y,y;), so M is nonsingular and the image of det M in K*/(K*)? is D,,.

Let A’ be the simplicial complex obtained by doing a stellar subdivision in the interior of F', with orien-
tation as described above and degree map deg’. We can identify K[A]/(zr) with a subring of K[A'], and
hence consider the images v, ...,y of y1,...,yp in K[A']. Set y, . =z ;.

We claim the the images of yj,...,y,,; span H’(A'). Indeed, by Lemma H(A') is spanned as a
K-vector space by monomials whose support is disjoint from F. The latter consists of monomials supported
away from FU{n+1}, together with powers of x,,11. Let z be a monomial in K[A] of degree ¢ whose support
is disjoint from F U {n + 1}. Then z = 327, N\jy; in H'(A) for some ); € K. Consider 2’ := z — >-°_ A\,
in ﬁq(A’ ). By Lemma the product of 2z’ with any monomial of degree d — g supported away from
FU{n+ 1} is zero. Also, z/xfljj = 0. We deduce that 2’ = 0, and the claim follows.

Let ¢/ be the image of Z;ill x; in Fl(A’), and let M’ be the (p+1) x (p+ 1) matrix whose (7, j)th entry
is deg/((é’)d_qugy;). For j < p, we have yjy,,.; = 0 in K[A']. By Lemma M’ is a block diagonal matrix
whose northwest p x p block is M and whose (p+1,p+1) entry M+1,p+1 is equal to the degree of Ed_quZqH
in the complex ¥ considered in Section [3[ (up to sign). Lemma implies that M, . is nonzero and
ordip) (M1 1) = 2¢ — 1.

We see that M is nonsingular, so {y4,...,¥,1} is a basis of ﬁq(A’ ). In particular, det M’ computes the
determinant of the Hodge-Riemann form.

As [ is not a facet of A/, Theorem and Proposition give that ordjp(det M') is even. Since
ord(p) (M} 1 p41) = 2¢ — 1 is odd, we see that ord|p)(det M) is odd, as desired. O

Proof of Theorem[I.1 Note that for even d and ¢ = d/2, the above proof of Theorem works over all
characteristics because we are in the middle degree, and so the assumption that £z is a strong Lefschetz
element holds vacuously. This case of Theorem implies Corollary Hence if F' is a facet of A, then
ord(p)(Day2) = 1 € Z/2Z. Let P € k[a; ;] be an irreducible polynomial that is not equal (up to multiplication
by a scalar) to one of the polynomials {[F] : F facet of A}. Over kla; ;], we may factor P = P/"* .. P,
where the P; are distinct irreducible polynomials over k and m; € Z~g. Note that none of the P; are

scalar multiples of [F]. We claim that there are monomials 1, . .., ¥y, such that their images form a basis of

Fd/z(A) and ordp, (det M) = 0, where M is the p X p matrix whose (7,7) entry is deg(y;y;). This implies

that ordp(det M) = 0 and hence ordp(Dg/2) = 0. We deduce that Dgjo = AT x paces of alF] € KX /(K*)?
for some A\ € k% /(k*)?2, completing the proof.
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It remains to verify the claim. Let V(P;) be the vanishing locus of P; inside A%’H and let (u; ;) € V(P1)
be a k-point. Set u; = > Hijx;. First suppose that p = (u1,..., pq) is an Ls.o.p. for k(a; ;)[A]. Observe
that ev,(P;) = 0 since (y;,;) € V(Pr). Then the claim follows from Lemma Note that the assumption
in Lemma@ that £, is a strong Lefschetz element holds vacuously since we are in middle degree. Hence we
may assume that p is not an l.s.o.p. By Proposition there must be some facet F' of A such that (u; ;) is
contained in the vanishing locus of [F]. Applying this to every k-point of V(P;), we see that

vipne  J o V(FD.
F facet of A
As there are only finitely many facets, this implies that V(P) is contained in V([F]) for some facet F'. The
irreducibility of [F] then implies that P; and [F] are equal up to multiplication by a scalar, a contradiction.
([l

8. FURTHER DISCUSSION
We conjecture an extension of Theorem to pseudomanifolds in arbitrary characteristic.

Conjecture 8.1. Let k be a field of arbitrary characteristic. Let A be a connected oriented simplicial
pseudomanifold over k of dimension d — 1 with vertex set V. For all0 < ¢ < d/2, let D, be the determinant

of the Hodge—Riemann form on ﬁ%(A). Let F be a subset of V' of size d. Then

1 if F is a facet of A
0 otherwise.

ord[p} (Dq) = {

When A is a k-homology manifold, the proof of Theoremshows that if H (A’) has the strong Lefschetz
property whenever A’ = A or A’ is the stellar subdivision of A at the interior of a facet, then Conjecture|8.1
holds for A.

However, an additional ingredient is needed to establish Conjecture 8] for pseudomanifolds. A key
property of homology manifolds which was used in the proofs of our results, e.g., Lemma was that the
dimension of FZ(A) does not depend on p, the chosen l.s.o.p. (see Proposition . We show in the example
below that this independence of the dimension can fail for pseudomanifolds.

Example 8.2. Let A be the standard 6 vertex triangulation of RP?, and let A’ = A x S° be the suspension.
Over a field of characteristic 2, A’ is an oriented pseudomanifold, but it is not a homology manifold. Using
Macaulay2 [GS], we checked that, if one chooses an l.s.0.p. p1, pa, i3, g with all coefficients random elements
of the field with 1024 elements, the Hilbert function of H,(A’) is usually given by (1,4,9,6,1), and the
Hilbert function of H,(A’) is usually given by (1,4,8,4,1). If one chooses i}, uh, iy to be generic linear
combinations of the vertices of RP? and chooses 1) to be a generic linear combination of the vertices of S°,
then H,(A") = Hu ) (A) © Hyry(S°), and similarly for H,/(A’). We can then use Proposition [7.1] to
compute that the Hilbert function of H,/(A’) is given by (1,4,9,7,1), and the Hilbert function of H,,(A)
is given by (1,4,6,4,1).

However, we do not know an example of a pseudomanifold A where dim H*(A) # dim Hp(A). It follows
from Theorem [6.3] that the equality dim H”(A) = dim Hf(A) holding for all A would imply Conjecture
in the characteristic 2 case. We now show that this equality holds when ¢ = 1 (in any characteristic).

Proposition 8.3. Let k be a field of arbitrary characteristic. Let A be a connected oriented simplicial
pseudomanifold over k of dimension d — 1. Let p be any l.s.o.p. of K[A]. Then F;(A) = H)(A). In

particular, dimﬁi (A) = n — d independently of p.
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Proof. Let z = 31" | \iz; € H)(A) be such that zzg = 0 for all codimension 1 faces G of A. To prove the
statement, we need to show that z = 0.

Let F' be any facet of A. Since p is an ls.o.p and F’ is a facet, by Proposition ev,([F']) #0. It
follows from Lemma [2.3| that {z, : v ¢ F'} is a basis of H,(A). By using this basis, we can assume \; = 0
for i e F'.

Consider any codimension 1 face G C F’. Since A is a pseudomanifold, there is the unique facet F” of
A such that F' N F” = G; we let u denote the unique vertex of F”/ \. G. Then 0 = zoxg = Ayxrr. As Tpn
is nonzero because it has nonzero degree, it follows that A\, = 0. We conclude that A, = 0 for all v € F".
Continuing in this way, for any sequence of facets F' = Fy,..., F,. of A such that F; N F;,1 is a face of
codimension 1 for 0 < ¢ < r, we deduce that A\, = 0 for all v € F,.. Since A is a connected pseudomanifold,
every facet of A appears as F,. for some such sequence, and hence A\, = 0 for all v € V. Therefore z = 0, as
desired. |

Remark 8.4. Proposition [8:3] and Theorem [6.3] imply that Conjecture [8.1] holds when k has characteristic
2and g =1. By a bpeaahza‘mon argument similar to the proof of Theorem [I.4] we see that Conjecture [3
also holds when £ has characteristic 0 and ¢ = 1.

Assume that £ is a strong Lefschetz element in all degrees, i.e., the Hodge-Riemann form on "’ (A) is
nondegenerate for 0 < ¢ < d/2. The primitive part of H'(A) is Hprlm( )= {y e H'(A) : pa-2at1y — 0},
Let Dprim,g € K*/(K*)? be the determinant of the induced Hodge-Riemann form on Hpmm(A). For
0 < ¢ < d/2, multiplication by ¢ induces an injection " l(A) — H* (A) which splits to give an isomorphism
HY(A) = ﬁq_l(A) e H prlm(A) As this decomposition is orthogonal with respect to the Hodge-Riemann
form, we have Dy = Dy_1Dpyim ¢- In particular, D, = Do ] Dyrim,q - Since we established Conjecture|S.1

when ¢ =0 in Theorem [ 1] we conclude that Conjecture |§i'f| holding for all g is equivalent to the following
conjecture.

Conjecture 8.5. Let k be a field of arbitrary characteristic. Let A be a connected oriented simplicial
pseudomanifold over k of dimension d — 1 with vertex set V. Then £ is a strong Lefschetz element in all
degrees, and, for each subset F' of V' of size d and 0 < q < d/2, we have ord(p)(Dprim,q) = 0.

Remark 8.6. Let A be a connected simplicial pseudomanifold of dimension d — 1, and let 0 < ¢ < d/2.
Assume that char k = 2. By Theorem for every non-face F' of size d, H(A) has the strong Lefschetz
property in degree g. As above, the primitive part of H(A) is Hi pim(A) == {y € Hp(A) : €527y = 0},
and we have a decomposition Hp(A) F(}?l(A) ) ﬁ;prim(A). We claim that the restriction of the
Hodge-Riemann form to ﬁ;{«’prim(A) is anisotropic.

To prove the claim, we may assume that ¢ > 0 and that the Hodge-Riemann form on Hp(A) is not
anisotropic. Recall that W, C H F(A) is the span of all monomials whose support is not contained in
F. By Lemma and Corollary WJ- is 1-dimensional, and ¢%, is not in W, (W;-)J-. That is, if

W = span(z), then deg (0529201 ) is nonzero. This implies that £4 297!z is nonzero and hence z is not

primitive. The claim now follows from Proposition [5.6]
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