1. Prove the following basic facts about infinitesimal rigidity.

(a) **Replacement Lemma:** Let \(G = \langle V, E \rangle \) be a \(d \)-dimensional framework, and let \(G' \) be an induced subframework on \(k \) joints \(v_1, \ldots, v_k \) of \(G \). Assume further that \(G \) is infinitesimally rigid. Show that if \(G' \) is replaced by a new subframework \(G'' \) on joints \(v_1, \ldots, v_k \) that is infinitesimally rigid as a framework in the affine space spanned by \(v_1, \ldots, v_k \), then the modified framework, \(\tilde{G} = (G \setminus G') \cup G'' \), is infinitesimally rigid in the \(d \)-space.

(b) **Cone Lemma:** Let \(G = \langle V, E \rangle \) be a framework in \(\mathbb{R}^{d+1} \) such that \(H := \text{Aff}(V) \) is a hyperplane in \(\mathbb{R}^{d+1} \). For \(u \in \mathbb{R}^{d+1} \setminus H \) define \(G^* \{ u \} := \langle V', E' \rangle \), where \(V' = V \cup \{ u \} \) and \(E' = E \cup \{ uv : v \in V \} \) (i.e., \(G^* \{ u \} \) is a cone over \(G \) with apex \(u \)). Show that \(G \) is infinitesimally rigid in \(H \) if and only if \(G^* \{ u \} \) is infinitesimally rigid in \(\mathbb{R}^{d+1} \).

Hint for part (b): what is the relationship between the stress spaces of \(G \) and \(G^* \)?

2. (a) Show that if to a \(d \)-dimensional infinitesimally rigid framework with more than \(d \) joints a new joint \(v \in \mathbb{R}^d \) is added together with \(d \) bars incident with \(v \) that span \(\mathbb{R}^d \), then the new framework is also infinitesimally rigid.

(b) Show that a 1-dimensional framework with all joints distinct is infinitesimally rigid if and only if the underlying graph is connected. (**Hint:** start with a tree.)

(c) A framework is called a **triangulated polygon** if its underlying graph can be drawn in a plane as a convex \(n \)-gon \((n \geq 3)\) with a maximal set of non-crossing edges inside it. Show that any framework \(G = \langle V, E \rangle \) in the plane which is a triangulated polygon with no triangle of bars collinear is infinitesimally rigid, but deleting any bar from \(G \) makes it infinitesimally flexible.

3. Let \(G = (\{ n \}, E) \) be a graph on \(n \) vertices (considered as an abstract graph). A map \(\psi : \{ n \} \rightarrow \mathbb{R}^3 \) is called a **3-embedding** of \(G \) into \(\mathbb{R}^3 \). We identify the set of all 3-embeddings of \(G \) with \(\mathbb{R}^{3n} \) via \(\psi \mapsto (v_1, \ldots, v_n) = (\psi(1), \ldots, \psi(n)) \in \mathbb{R}^3 \times \cdots \times \mathbb{R}^3 \cong \mathbb{R}^{3n}. \) Each 3-embedding \(\psi \) of \(G \) defines a 3-dimensional framework whose joints are \(\psi(1), \ldots, \psi(n) \) and whose bars are the elements of \(E \). A 3-embedding of \(G \) into \(\mathbb{R}^3 \) is **infinitesimally rigid** (flexible, resp.) if the corresponding framework is infinitesimally rigid (flexible, resp.).

Prove the following result due to Gluck (1974): the set of infinitesimally rigid 3-embeddings of the graph of a 3-dimensional simplicial polytope with \(n \) vertices is open and dense in \(\mathbb{R}^{3n}. \)

Directions: Show first that a 3-embedding \(\psi \) (whose joints affinely span \(\mathbb{R}^3 \)) is infinitesimally flexible if and only if the stress matrix \(R(\psi) \) of the corresponding framework satisfies the following polynomial equation: \(\sum_B \det(B)^2 = 0 \), where the sum is over all \((3n - 6) \times (3n - 6) \) submatrices of \(A \). (**Hint:** How many edges does \(G \) have? What can you say about the rank of \(A' \)?) Conclude that the set of infinitesimally flexible 3-embeddings of \(G \) is an algebraic variety, and hence its complement in \(\mathbb{R}^{3n} \) is either empty or is open and dense. Why is the complement non-empty?