Reading assignment: Read carefully the lecture notes. In addition, read §3.1, §3.5 (pages 70-72 only, through the end of the proof of Theorem 3.20), and §3.7; glance at Sections 9.2 and 9.3.

Written assignment: Solve the following problems. Please don’t forget to follow the Homework Guidelines (see our web-page).

1. Determine whether the statement is true or false. Justify your answer with a proof or a counterexample.
 (a) If \(f + g : \mathbb{R} \to \mathbb{R} \) is continuous, then \(f : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \) are continuous.
 (b) If \(f^2 : \mathbb{R} \to \mathbb{R} \) is continuous, then \(f : \mathbb{R} \to \mathbb{R} \) is continuous.
 (c) If \(f + g : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \) are continuous, then \(f : \mathbb{R} \to \mathbb{R} \) is continuous.

2. (a) Define \(f : \mathbb{R} \to \mathbb{R} \) by
 \[
 f(x) = |x| = \begin{cases}
 x & \text{if } x \geq 0 \\
 -x & \text{if } x < 0.
 \end{cases}

 Use the sequence definition of continuity to show that \(f \) is continuous on \(\mathbb{R} \).

 (b) Define \(f : [0, 5] \to \mathbb{R} \) by
 \[
 f(x) = \begin{cases}
 7 & \text{if } 0 \leq x \leq 4 \\
 3x & \text{if } 4 < x \leq 5.
 \end{cases}

 At what points is the function \(f \) continuous? Use the sequence definition of continuity to justify your answer.

3. Define \(f : \mathbb{R} \to \mathbb{R} \) by
 \[
 f(x) = \begin{cases}
 x & \text{if } x \leq 1 \\
 4 - 2x & \text{if } x > 1.
 \end{cases}

 Use the \(\varepsilon-\delta \) definition of continuity to show that \(f \) is continuous at every \(x_0 \in \mathbb{R} \) except \(x_0 = 1 \).

4. We say that a function \(f : \mathbb{R} \to \mathbb{R} \) is Lipschitz continuous if there exists a non-negative constant \(C \) such that, for every \(x_1, x_2 \in \mathbb{R} \),
 \[
 |f(x_1) - f(x_2)| \leq C|x_1 - x_2|.

 Use the \(\varepsilon-\delta \) definition of continuity to show that if \(f \) is Lipschitz continuous, then \(f \) is continuous on \(\mathbb{R} \).

5. Define \(f : \mathbb{R} \to \mathbb{R} \) by
 \[
 f(x) = \begin{cases}
 3x - 6 & \text{if } x \neq 0 \\
 1 & \text{if } x = 0.
 \end{cases}

 Determine \(\lim_{x \to 0} f(x) \) and use the sequence definition of a limit to prove that your response is correct.

6. Prove that \(\lim_{x \to 0} \frac{|x|}{x} \neq 1 \), \(\lim_{x \to 0} \frac{|x|}{x} \neq -1 \), and \(\lim_{x \to 0} \frac{|x|}{x} \neq 0. \)