Reading assignment: Read carefully the lecture notes. In addition, (i) read pages 230-235, through the end of Corollary 9.13 (the p-Test), (ii) look at Example 2.27 on pages 39–40 of the proof of the divergence of the Harmonic Series, and glance at pages 236-239.

Written assignment: Solve the following problems. Please don’t forget to follow the Homework Guidelines (see our web-page).

1. Determine whether each of the following series converges or diverges. If the series converges, give its sum. Give complete and careful proofs of your answers.

(a) \[\sum_{k=1}^{\infty} \left(\frac{3}{4} \right)^k \]

(b) \[\sum_{k=2}^{\infty} \frac{k-3}{4k+5} \]

(c) \[\sum_{k=2}^{\infty} \frac{4k+1}{5k} \]

(d) \[\sum_{k=1}^{\infty} a_k \], where \(a_k = \begin{cases} k^2 & \text{if } 1 \leq k \leq 5 \\ 0 & \text{if } k > 5 \end{cases} \)

(Be clear about the sequence of partial sums.)

(e) \[\sum_{k=1}^{\infty} \frac{1}{k(k+1)} \]

HINT: Note that \(\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1} \).

2. Let \(\{a_k\} \) and \(\{b_k\} \) be sequences of real numbers. In each of the following, your proof should contain no ellipses [\ldots\].

(a) Let \(c \in \mathbb{R} \). Use the Distributive Axiom and induction on \(n \) to prove that, for every \(n \in \mathbb{N} \), \(\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k \).

(b) Use the Commutative and Associative Axioms and induction on \(n \) to prove that, for every \(n \in \mathbb{N} \), \(\sum_{k=1}^{n} (a_k + b_k) = \left(\sum_{k=1}^{n} a_k \right) + \left(\sum_{k=1}^{n} b_k \right) \).

(c) Suppose that \(c \) and \(d \) are real numbers and that \(\sum_{k=1}^{\infty} a_k \) and \(\sum_{k=1}^{\infty} b_k \) both converge. Give a careful proof (using parts (a) and (b), partial sums, and Limit Properties) that \(\sum_{k=1}^{\infty} (ca_k + db_k) = c \sum_{k=1}^{\infty} a_k + d \sum_{k=1}^{\infty} b_k \).

3. Determine whether each statement is true or false. Justify your answer.

(a) If \(\sum_{k=1}^{\infty} a_k \) converges, then \(\sum_{k=1}^{\infty} \frac{1}{1 + a_k} \) must diverge.

(b) If \(a_k \geq 0 \) for all \(k \in \mathbb{N} \) and \(\sum_{k=1}^{\infty} a_k \) converges, then \(\sum_{k=1}^{\infty} \frac{a_k}{1 + a_k} \) must converge.
(c) If \(\sum_{k=1}^{\infty} a_k^2 \) converges, then \(\sum_{k=1}^{\infty} a_k \) must converge.

(d) If \(0 \leq a_k \leq b_k \) for all \(k \in \mathbb{N} \) and \(\sum_{k=1}^{\infty} b_k \) diverges, then \(\sum_{k=1}^{\infty} a_k \) must also diverge.

4. Determine whether each series converges or diverges. Justify your answer.

(a) \(\sum_{k=1}^{\infty} \frac{1}{3^k + k - 1} \)

(b) \(\sum_{k=1}^{\infty} \frac{k}{k^2 - k + 2} \)

5. In class, we proved that the Geometric Series \(\sum r^k \) converges for \(|r| < 1 \) and diverges otherwise. This proof depended on the convergence or divergence of the sequence \(\{r^n\} \). We dealt with the cases in which \(|r| < 1, r = 1, \) and \(r = -1 \). The following problem will take care of the remaining cases: \(r > 1 \) and \(r < -1 \).

Definition: Let \(\{a_n\} \) be a sequence of real numbers. We say that \(\lim_{n \to \infty} a_n = \infty \) if, for every \(M > 0 \), there is an \(N \in \mathbb{N} \) such that, if \(n \geq N \), then \(a_n > M \).

(a) Suppose \(\{a_n\} \) is a sequence with \(a_n > 0 \) for all \(n \in \mathbb{N} \). Prove that \(\lim_{n \to \infty} a_n = \infty \) if and only if \(\lim_{n \to \infty} \frac{1}{a_n} = 0 \).

(b) We’ve proved that, if \(|c| < 1 \), then \(\lim_{n \to \infty} c^n = 0 \). Use this fact and part (a) to prove that if \(r > 1 \), then \(\lim_{n \to \infty} r^n = \infty \).

(c) In each of the following, suppose \(r < -1 \).

i. Prove that \(r^n \) does not converge to any real number.

Hint: assume by contradiction that \(\{r^n\} \) converges to \(m \). What can we then conclude about \(\{|r|^n\} \)? Is this possible in view of part (b)?

ii. Prove that \(\lim_{n \to \infty} r^n \neq \infty \).

iii. Modify the definition above for \(\lim_{n \to \infty} a_n = \infty \) to give a definition for the statement \(\lim_{n \to \infty} a_n = -\infty \). Then prove that \(\lim_{n \to \infty} r^n \neq -\infty \).

(d) Summarize the results of this exercise by giving a complete description of the behavior of the sequence \(\{r^n\} \). That is, list the values of \(r \) for which the sequence converges (include the limit of the sequence in your description) and the values of \(r \) for which the sequence diverges.