1. Problems II (page 117), problem 12.

2. Use the formal definition of limit of a sequence to prove that the sequence \(a_n = \frac{1}{n^2} \) has limit equal to zero (that is, \(a_n \) is what the book calls a “null” sequence).

3. Use the (negation of the) formal definition of limit of a sequence to prove that the sequence \(b_n = n^2 \) does not have limit equal to 0 (that is, \(b_n \) is NOT what the book calls a “null” sequence).

4. Problems II (page 118) problem 16 parts ii, iii and v.

 \text{(note: you do not need to provide a proof for the surjective/not surjective part of iii. You are expected to prove the rest; you can use properties of powers, exponential and logarithmic functions.)}

5. Problems II, page 118, Problem 20 (i)

6. Let \(f : X \rightarrow Y \) be a function. Prove that

 a) \(f \) is injective \(\iff \overline{f} \) is injective

 b) \(f \) is injective \(\iff \overline{f} \) is surjective