DEFINITIONS:

1. The identity function on a set X is the function $I_{X^{B}} X \rightarrow X_{,} I_{R}(x)=X$ for all $x \in X$.

Suppose $f: X \rightarrow Y$ is a function. Then:

- The image of f is defined to be: $\operatorname{Im}(f)=\{f(x) \mid x \in X\}=\{y \in Y \| y=f(x)$ for some $x \in X\}$
- The graph of f can be thought of as the set $G_{f} \subseteq X \times Y, G_{f}=\{(x, f(x)) \mid x \in X]$.

We say that $f: X \rightarrow Y$ is:

- f is injective iff:

$$
\forall x_{1}, x_{2} \in X_{s}\left[x_{1} \neq x_{2}\right] \Rightarrow\left[f\left(x_{1}\right) \neq f\left(x_{2}\right)\right]
$$

More useful in proofs is the contrapositive: $\quad \forall x_{1}, x_{2} \in X_{n}\left[f\left(x_{1}\right)=f\left(x_{2}\right)\right] \Rightarrow\left[x_{1}=x_{2}\right]$

- f is surjective iff:

$$
\forall y \in Y_{y} \exists x \in X, y=f(x) .
$$

Note that this is equivalent to saying that $Y=\operatorname{Im}(f)$

- f is bijective iff it's both injective and surjective.
- \quad invertible (has an inverse) iff $\exists g: Y \rightarrow X, g \circ f=I_{X}$ and $f \circ g=I_{Y}$.

This function g is called the inverse of f , and is often denoted by f^{-1}.
Theorem 9.2.3: A function $f: X \rightarrow Y$ is invertible if and only if it is a bijection. Further, if it is invertible, its inverse is unique. (proof is in textbook)

Induced Functions on Sets: Given a function $f: X \rightarrow Y$, it naturally induces two functions on power sets:

- the forward function $\vec{f}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$, defined by $\vec{f}(A)=\{f(x) \mid x \in A\}$ for any set $A \in \mathcal{P}(X)$. Note that $\vec{f}(A)$ is simply the image through f of the subset A.
- the pre-image function $\bar{f}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)$, defined by $\bar{f}(B)=\{x \in X \mid f(x) \in B\}$ for any set $B \in \mathcal{P}(Y)$. Note that $\bar{f}(B)$ is simply the set of all the elements that f maps to elements in the subset B of the codomain.

EXAMPLES \& PROBLEMS:

1. Give an example of a function with domain \mathbb{Z}, whose image is \mathbb{Z}^{+}.

$$
f: \mathbb{Z} \rightarrow \mathbb{Z}_{s} f(x)=\|x\|+\mathbb{1}
$$

2. Write the graph of the identity function on $\mathbb{Z}, I_{\mathbb{Z}}: \mathbb{Z} \rightarrow \mathbb{Z}, I_{\mathbb{Z}}(x)=x$, as a subset of $\mathbb{Z} \times \mathbb{Z}$.
$G=\{(x, x) \mid x \in \mathbb{Z}\}$
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=5 x-1$.
a. Is this function injective? Yes/No. Proof:

Suppose that there exist two values $x_{1}, x_{2} \in \mathbb{R}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 5 x_{1}-1=5 x_{2}-1 \Rightarrow 5 x_{1}=5 x_{2} \Rightarrow x_{1}=x_{2}
$$

Since for any $x_{1}, x_{2} \in \mathbb{R}, f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$, the function f is injective. QED
b. Is this function surjective? Yes/No. Proof:

For any $y \in \mathbb{R}$ there exists some $x \in \mathbb{R}$, namely $x=\frac{y+1}{5}$, such that

$$
f(x)=f\left(\frac{y+1}{5}\right)=5\left(\frac{y+1}{5}\right)-1=y .
$$

This proves that the function is surjective.QED
c. Is it bijective? Yes/No. If yes, find its inverse.

$$
f^{-1}: \mathbb{R} \rightarrow \mathbb{R}_{\mathbb{R}} f^{-1}(x)=\frac{x+1}{5}
$$

d. Compute $f \circ f$.

$$
f \propto f: \mathbb{R} \rightarrow \mathbb{R}, f \propto f(x)=f(f(x))=f(5 x-1)=5(5 x-1)-1=25 x-6
$$

4. Let $: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^{2}$.
a. Is this function injective? Yes/No Proof:

There exist two real values of x , for instance $\boldsymbol{x}_{1}=-2$ and $\boldsymbol{x}_{2}=2$, such that

$$
f\left(x_{1}\right)=f\left(x_{2}\right)=4_{x} \text { but } x_{1} \neq x_{2} .
$$

b. Is this function surjective? Yes/No Proof:

There exist some $y \in \mathbb{R}$, for instance $y=-\mathbf{1}$, such that for all $\mathrm{x} \in \mathbb{B}$

$$
f(x)=x^{2}>-1 .
$$

This shows that -1 is in the codomain but not in the image of f, so f is not surjective. QED
c. Is it bijective? Yes/No. If yes, find its inverse.
5. Let $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^{2}$. Determine the following sets:

$$
\begin{array}{ll}
\vec{g}(\mathbb{R})=[0, \infty) & \bar{g}(\mathbb{R})=\mathbb{R} \\
\vec{g}([0,1])=[0,1] & \bar{g}([0,1])=[-1,1] \\
\vec{g}([-2,7))=[0,49) & \stackrel{+}{g}((1,2))=(-\sqrt{2},-1) \cup(1, \sqrt{2})
\end{array}
$$

6. Given $f: X \rightarrow Y$, and two subsets $A, B \subseteq X$, prove that $\vec{f}(A \cap B) \subseteq \vec{f}(A) \cap \vec{f}(B)$.

Proof:
Let $y \in \vec{f}(A \cap B)$. By definition of \vec{f}_{v} this means that there exists an element $x \in A \cap B$ such that $y=f(x)$. Since $x \in A$ and $y=f(x)$, we get that $y \in \vec{f}(A)$. Since $x \in B$ and $y=f(x)$ we must have $y \in \vec{f}(B)$ as well. Hence, by definition of set intersection, $y \in \vec{f}(A) \cap \vec{f}(B)$. This proves that $\vec{f}(A \cap B) \subseteq \vec{f}(A) \cap \vec{f}(B)$ QED

