Ch 9: Injectivity, Surjectivity, Inverses & Functions on Sets

DEFINITIONS:

1. The **identity function** on a set X is the function $I_X: X \to X, I_X(x) = x$ for all $x \in X$.

Suppose $f: X \to Y$ is a function. Then:

- The *image of f* is defined to be: $Im(f) = \{f(x) | x \in X\} = \{y \in Y | y = f(x) \text{ for some } x \in X\}$
- The graph of f can be thought of as the set $G_f \subseteq X \times Y$, $G_f = \{(x, f(x)) | x \in X\}$.

We say that $f: X \to Y$ is:

• *f* is injective iff: $\forall x_1, x_2 \in X, [x_1 \neq x_2] \Longrightarrow [f(x_1) \neq f(x_2)]$

More useful in proofs is the contrapositive: $\forall x_1, x_2 \in X, [f(x_1) = f(x_2)] \Rightarrow [x_1 = x_2]$

- *f* is surjective iff: ∀y ∈ Y, ∃x ∈ X, y = f(x).
 Note that this is equivalent to saying that Y = Im(f)
- *f is bijective* iff it's both injective and surjective.
- *f invertible* (has an inverse) iff ∃*g*: *Y* → *X*, *g* ∘ *f* = *I_X* and *f* ∘ *g* = *I_Y*. This function g is called the inverse of f, and is often denoted by *f*⁻¹. Theorem 9.2.3: A function *f*: *X* → *Y* is invertible if and only if it is a bijection. Further, if it is invertible, its inverse is unique. (proof is in textbook)

Induced Functions on Sets: Given a function $f: X \to Y$, it naturally induces two functions on power sets:

- the forward function *f* : *P*(*X*) → *P*(*Y*), defined by *f*(*A*) = {*f*(*x*) | *x* ∈ *A*} for any set *A*∈*P*(*X*).
 Note that *f*(*A*) is simply the image through *f* of the subset A.
- the pre-image function $\overline{f}: \mathcal{P}(\mathbb{Y}) \to \mathcal{P}(X)$, defined by $\overline{f}(B) = \{x \in X | f(x) \in B\}$ for any set $B \in \mathcal{P}(\mathbb{Y})$. Note that $\overline{f}(B)$ is simply the set of all the elements that f maps to elements in the subset B of the codomain.

EXAMPLES & PROBLEMS:

1. Give an example of a function with domain \mathbb{Z} , whose image is \mathbb{Z}^+ .

 $f: \mathbb{Z} \to \mathbb{Z}, f(x) = |x| + 1$

2. Write the graph of the identity function on \mathbb{Z} , $I_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}$, $I_{\mathbb{Z}}(x) = x$, as a subset of $\mathbb{Z} \times \mathbb{Z}$.

 $G = \{(x,x) | x \in \mathbb{Z}\}$

- 3. Let $f: \mathbb{R} \to \mathbb{R}, f(x) = 5x 1$.
 - a. Is this function injective? Yes/No. Proof:
 Suppose that there exist two values x₁, x₂ ∈ ℝ such that f(x₁) = f(x₂). Then f(x₁) = f(x₂) ⇒ 5x₁ 1 = 5x₂ 1 ⇒ 5x₁ = 5x₂ ⇒ x₁ = x₂.
 Since for any x₁, x₂ ∈ ℝ, f(x₁) = f(x₂) ⇒ x₁ = x₂, the function f is injective. QED
 - b. Is this function surjective? Yes/No. Proof: For any $y \in \mathbb{R}$ there exists some $x \in \mathbb{R}$, namely $x = \frac{y+1}{5}$, such that

$$f(x) = f\left(\frac{y+1}{5}\right) = 5\left(\frac{y+1}{5}\right) - 1 = y.$$

This proves that the function is surjective.QED

c. Is it bijective? Yes/No. If yes, find its inverse.

$$f^{-1}: \mathbb{R} \to \mathbb{R}, f^{-1}(x) = \frac{x+1}{5}$$

- d. Compute $f \circ f$. $f \circ f \colon \mathbb{R} \to \mathbb{R}, f \circ f(x) = f(f(x)) = f(5x-1) = 5(5x-1) - 1 = 25x - 6$
- 4. Let: $\mathbb{R} \to \mathbb{R}$, $g(x) = x^2$.
 - a. Is this function injective? Yes/No Proof:

There exist two real values of x, for instance $x_1 = -2$ and $x_2 = 2$, such that

 $f(x_1) = f(x_2) = 4$, but $x_1 \neq x_2$.

b. Is this function surjective? Yes/No Proof:

There exist some $y \in \mathbb{R}$, for instance y = -1, such that for all $x \in \mathbb{R}$

$$f(x) = x^2 > -1$$

This shows that -1 is in the codomain but not in the image of f, so f is not surjective. QED

- c. Is it bijective? Yes/No. If yes, find its inverse.
- 5. Let $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2$. Determine the following sets:
- 6. Given $f: X \to Y$, and two subsets $A, B \subseteq X$, prove that $\overline{f}(A \cap B) \subseteq \overline{f}(A) \cap \overline{f}(B)$. Proof:

Let $y \in \vec{f}(A \cap B)$. By definition of \vec{f} , this means that there exists an element $x \in A \cap B$ such that y = f(x). Since $x \in A$ and y = f(x), we get that $y \in \vec{f}(A)$. Since $x \in B$ and y = f(x) we must have $y \in \vec{f}(B)$ as well. Hence, by definition of set intersection, $y \in \vec{f}(A) \cap \vec{f}(B)$. This proves that $\vec{f}(A \cap B) \subseteq \vec{f}(A) \cap \vec{f}(B)$. QED