Math 310: Homework 7 (Ch 14) – due Wednesday, 11/26

In pbls 3 and 4 below, you may assume that the Continuum Hypothesis holds.

1. Use Cantor’s diagonal argument to write a complete formal proof showing that the interval of real numbers [2,3] is uncountable.

2. Prove that if \(A \) and \(B \) are infinite countable sets, then \(A \cup B \) is also countable. You may assume \(A \) and \(B \) are disjoint.

3. Determine the cardinality of the following sets. Your answer should be either an integer number, or one of \(\aleph_0 \), \(\aleph_1 \), \(\aleph_2 \), etc. No proof is needed (but you should be able to justify your answer if asked!).
 a) the irrational numbers
 b) \(\mathbb{Q} \times \mathbb{Q} \)
 c) \(S = \{ \sqrt{n} \mid n \in \mathbb{Q}^2 \} \)
 d) \(T = \{ \sqrt[n]{m} \mid n \in \mathbb{N}, m \in \mathbb{N} \} \)
 e) \(A = \{ n \in \mathbb{Z} \mid 0 \leq n \leq 41 \} \)
 f) the power set of the rational numbers, \(\mathcal{P}(\mathbb{Q}) \)
 g) the complex numbers: \(\mathbb{C} = \{ x + iy \mid x, y \in \mathbb{R}, i = \sqrt{-1} \} \)

4. Give examples of sets (other than precisely \(\mathbb{N}_{81}, \mathbb{N}, \mathbb{Z}, \mathbb{Q} \) or \(\mathbb{R} \)) with cardinality:
 a) 81
 b) 0
 c) \(\aleph_1 \)
 d) \(\aleph_5 \)